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1 The Atom as a Harmonic Oscillator

The Lorentz oscillator model treats the atom as a classical harmonic oscillator interacting with
light. This model makes accurate predictions in some situations and it will help us understand
the quantum mechanical model of atom-light interactions.

1.1 Driven Oscillation of the Electron

When light shines on an atom, it causes one of the electrons to oscillate. If the light is weak
enough, the oscillations will be small and we can approximate the atom as a harmonic oscillator.
Experimentally, we know that atoms have discrete resonant frequencies. Suppose we want to
model just one of those resonances. We can then describe the average x position of an electron
relative to the nucleus using the differential equation for a driven, damped harmonic oscillator:

ẍ+ γẋ+ ω2
0x = −eEx(t)/m (1)
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Here γ is the damping rate of the oscillator, ω0 is the angular frequency of the resonance, the
electron charge is −e, and m is the reduced mass of the electron and the nucleus, m ≈ me.
The x-component of the electric field at the position of the atom is Ex(t). We make the
approximation Ex(r, t) ≈ Ex(0, t) ≡ Ex(t), which is valid when the wavelength of the light is
much larger than the size of the atom so that the electric field is uniform across the atom. We
consider light that is monochromatic, linearly polarized in the x direction, and propagating in
the z direction. The electric field of the light at the location of the atom is then:

Ex(t) = E0 cos(ωt) = Re
[
E0e

−iωt] (2)

For convenience, we choose the phase of the oscillation such that it is represented by cosine,
although the final results would be the same for any choice of phase. Note that in writing (1),
we are neglecting the Lorentz force due to the magnetic field of the light, which is a factor of
ż/c smaller that the force due to the electric field.

The electric field (2) describes a continuous-wave (CW) light field like that produced by
a CW (i.e. non-pulsed) laser. We will use the Lorentz oscillator model to understand the
propagation of the light through a vapor of atoms, and to predict the forces exerted by the
light on the atoms. To do so, we will employ the steady-state solution for x(t), which oscillates
at frequency ω. We write the steady-state solution in the form:

x(t) = Re
[
x̃e−iωt

]
(3)

where x̃ is a complex number. The phase of x̃ tells us the phase of the oscillation relative
to the electric field. In the language of inhomogeneous linear differential equations, (3) is a
“particular solution.” It is also the steady-state solution, because the homogeneous solutions
to (1) decay to zero at a rate of γ. Plugging (3) into (1) gives:

− ω2x̃− iωγx̃+ ω2
0 x̃ = − e

m
E0 (4)

−→ x̃ =
−eE0/m

ω2
0 − ω2 − iγω

(5)

The real part of x̃ describes the in-phase response of the oscillator, while the imaginary
part represents the out-of-phase response. To see this explicitly, we write x̃ in terms of its real
and imaginary parts:

x̃ = U − iV (6)

(the minus sign is included to be consistent with other references). The real and imaginary
parts are:

U =
−eE0

m

ω2
0 − ω2

(ω2
0 − ω2)2 + (ωγ)2

(7)

V =
eE0

m

γω

(ω2
0 − ω2)2 + (ωγ)2

(8)

The real position x(t) of the oscillator is then:

x(t) = Re
[
(U − iV)e−iωt

]
(9)

= U cos(ωt)− V sin(ωt) (10)

which shows that U is the amplitude of the in-phase response and V is the amplitude of the out-
of-phase response (also called the in-quadrature response, because U and V can be represented
as the legs of a right triangle in the complex plane).

The response can also be represented in terms of its amplitude and phase:

x̃ =
√
U2 + V2 e−iδ (11)
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where the phase is:

δ = cos−1(U/
√
U2 + V2) (12)

The position of the oscillator in terms of the phase shift is then:

x(t) = Re
[√
U2 + V2 e−i(δ+ωt)

]
=
√
U2 + V2 cos(ωt+ δ) (13)

1.1.1 Complex Representations

We can think of x̃ as the complex representation of x(t). In general, given any quantity q(t)
that oscillates at angular frequency ω, we can define its complex amplitude q̃ via

q(t) = Re
[
q̃e−iωt

]
(14)

The complex phase of q̃ encodes the phase of the oscillation. The quantity q̃ is often called a
phasor.

1.2 Electric Polarization of the Atom

When the average position of the electron is displaced from the center of the atom, the atom
has an electric dipole moment. The dipole moment will tell us a lot about how the atom
interacts with light. Recall that the electric dipole moment of a collection of particles is defined
as:

d =
∑
j

qjrj (15)

where qj and rj are the charge and position of the j-th particle. For an atom excited by laser
light, the excited electron has charge −e and position re, while the nucleus together with all the
other electrons have charge e and average position rn. Defining the displacement r = re − rn,
the dipole moment of the atom is then

d = −ere + ern (16)

= −er (17)

For discussion of light that is linearly polarized in the x, or î, direction, the dipole moment
becomes:

d(t) = dx(t) î with dx(t) = −ex(t) (18)

As with the position, we can describe the dipole moment in a complex representation:

dx(t) = −eRe
[
x̃e−iωt

]
= Re

[
d̃x e

−iωt
]

(19)

where

d̃x = −ex̃ (20)

=
e2E0/m

ω2
0 − ω2 − iγω

(21)

Equation (21) shows that the amplitude of the atomic polarization is proportional to the ampli-
tude of the electric field. We define the polarizability α(ω) of the atom as the proportionality
constant (at the given frequency ω):

d̃x = α(ω)E0 (22)

The polarizability is therefore:

α(ω) =
e2/m

ω2
0 − ω2 − iγω

(23)

Near resonance, ω ≈ ω0, and we can approximate:

α(ω) ≈ − e2

2mω0

(
1

∆ + iγ/2

)
(24)

where ∆ = ω − ω0.
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1.2.1 Vector Notation

For an electric field in an arbitrary direction, the complex representation is:

E(t) = E0 cos(ωt) = Re
[
E0e

−iωt] (25)

We define the complex representation of the dipole moment as:

d(t) = Re
[
d̃ e−iωt

]
(26)

The complex dipole moment is then related to the electric field by:

d̃ = α(ω)E0 (27)

1.3 Polarization and Intensity of Light

So far we have assumed linearly polarized light. We can describe elliptically polarized light by
using complex notation:

E(t) = Re
[
Ẽ e−iωt

]
(28)

= Re[Ẽ] cos(ωt) + Im[Ẽ] sin(ωt) (29)

In that case, the complex dipole moment of the atom is:

d̃ = α(ω)Ẽ (30)

As an example, we can describe a plane wave propagating in the z direction with circular
polarization in the x− y plane using Ẽ = 1√

2
E0e

ikz(1, i, 0).

In general, we describe the polarization of light using a complex unit vector ε̂ which we
call the polarization vector:

Ẽ = E0 ε̂ e
ikz (31)

where E0 is real and ε̂∗ · ε̂ = 1. Some common cases:

linear polarization along z : ε̂ = ẑ
right-hand circular polarization about z : ε̂ = 1√

2
(x̂ + iŷ)

left-hand circular polarization about z : ε̂ = 1√
2
(x̂− iŷ)

(32)

For arbitrary polarization ε̂, the time-averaged intensity of the light is:

I = cε0 〈E ·E〉t (33)

=
1

2
cε0E

2
0 (34)

1.4 Oscillator Strength

The classical result for the polarizability of an atom is almost correct, but quantum mechanics
makes two modifications. The first is just a reminder that the harmonic oscillator approxi-
mation is only valid for weak fields. For stronger fields, we will see in the quantum treatment
that the response of the atom becomes nonlinear and α(ω) essentially becomes dependent on
the light intensity. The second modification is that, even for weak fields, we must include a
correction factor called the oscillator strength. For the transition from the ground state
to the j-th excited state, we write the oscillator strength as f0j ≥ 0. The oscillator strength
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modifies the sensitivity of the atom to the electric field, and can be including by replacing
Ex → f0jEx in equation (1). The polarizability due to the 0-to-j transition is then:

α0j(ω) =
f0j e

2/m

ω2
j0 − ω2 − iγjω

(35)

≈ − e2f0j
2mωj0

(
1

ω − ωj0 + iγj/2

)
(36)

Here ωj0 is the resonant frequency of the 0-to-j transition and γj is the decay rate of the j-th
excited state. The total polarizability of the atom in the ground state is then given by a sum
over the excited states:

α0(ω) =
∑
j

α0j(ω) (37)

Qualitatively, the oscillator strength accounts for the fact that the atom has many reso-
nances. It can be loosely interpreted as the probability that the atom will behave as a harmonic
oscillator with resonant frequency ωj0. This interpretation is supported by the fact that the
oscillator strengths sum to unity: ∑

j

f0j = 1 (38)

This result is known as the Thomas-Reiche-Kuhn sum rule and is proven nicely in the notes
by Steck, Section 1.2, and in the book by Metcalf in appendix 3.A. It is also worth noting that
the oscillator strength depends on the polarization of the light.

1.5 Radiative Damping

Classical electrodynamics predicts that an oscillating charge should radiate energy. For our
model of an electron undergoing harmonic oscillation, the classical damping rate is:

γcl =
e2ω2

6πε0mec3
(39)

2 Light Propagation in an Atomic Medium

2.1 Polarization Density and Susceptiblity

If we have a gas of atoms with number density na(R) and each atom near position R has
dipole moment d(t), then the polarization density is

P = na d (40)

In the complex representation, the complex polarization density is then:

P̃ = na d̃ = na α(ω)Ẽ (41)

where we have used the general result for the dipole moment (30) in the second equation.
Meanwhile, in electricity and magnetism, the complex susceptibility χ is defined as:

P̃ = ε0χ(ω)Ẽ (42)

The susceptibility is therefore related to the polarizability by:

χ(ω) =
na
ε0
α(ω) (43)

Although it’s not obvious, you can check that χ is a dimensionless number. For a dilute gas
(i.e. small density of atoms), |χ| � 1.
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2.2 Electromagnetic Waves

A medium, such as an atomic gas, that develops a polarization in response to an electric field
is called a dielectric medium. The medium can also have a magnetic response, leading to a
magnetization density M. In a moment, we will assume M = 0, but for now we keep it.
Maxwell’s equations in a material are expressed with the help of auxiliary fields D and H,
given by:

D = ε0E + P (44)

H =
1

µ0
B + M (45)

We will assume that the free charge ρf and free current Jf are zero, meaning there are no
extra charges or currents other than the atoms themselves. Maxwell’s equations are then:

∇ ·B = 0 (46)

∇×E = −∂B

∂t
(47)

∇ ·D = 0 (48)

∇×H =
∂D

∂t
(49)

Since we are considering a linear medium, where the polarization density is a linear response
to the electric field, we can also show that the divergence of the electric field is zero:

∇ ·E = 0 (50)

Now assuming M = 0 for simplicity, we can also write:

B = µ0H (51)

We can use these equations to find a wave equation for the electric field. To do so, we will use
the vector calculus identity ∇× (∇×E) = −∇2E +∇(∇ ·E) together with ∇ ·E = 0 to get:

∇2E = −∇× (∇×E) (52)

= ∇× ∂B

∂t
= µ0∇×

∂H

∂t
(53)

= µ0
∂2D

∂t2
(54)

We will solve the wave equation for a monochromatic field of the form:

E = Re
[
Ẽ e−iωt

]
(55)

where Ẽ = Ẽ(r′) is a function of position r′. Using the definition (42) of χ(ω) the polarization
density is:

P = Re
[
ε0χ(ω)Ẽ e−iωt

]
(56)

The definition (44) of the “displacement field” D gives:

D = Re
[
ε0(1 + χ) Ẽ e−iωt

]
(57)

Substituting the equations (55) and (57) for E and D in the wave equation (54) gives:

∇2Ẽ = −k20(1 + χ)Ẽ (58)
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where we have introduced the definition

k0 = ω/c (59)

and c is the speed of light in vacuum:

c =
1

√
µ0ε0

(60)

We can solve the differential equation (58) for Ẽ for a plane wave traveling in the z direction:

Ẽ = Ẽ0 e
ik̃z (61)

where k̃ is a complex number. Plugging our plane wave (61) into the differential equation (58)

for Ẽ gives:
k̃ = k0

√
1 + χ (62)

Here we have chosen the positive square root to describe motion in the +z direction. Since χ
is complex,

√
1 + χ is a complex number. We call it the complex index of refraction ñ:

ñ =
√

1 + χ (63)

≈ 1 +
1

2
χ (64)

where the second line uses the Taylor expansion for |χ| � 1, valid for a dilute gas. Formally,
we have now solved for the electric field of a plane wave in an atom medium. Collecting the
above results, we can write our solution as:

Ẽ = Ẽ0 e
iñk0z (65)

In the next section we will study the physical meaning of this solution. We will see that the
real part of ñ corresponds to the usual index of refraction and leads to a phase shift of the
light, while the imaginary part of ñ leads to absorption of the light.

2.3 Phase Shift and Absorption

We separate ñ into real and imaginary parts:

nr = Re[ñ] ≈ 1 +
1

2
Re[χ] (66)

ni = Im[ñ] ≈ 1

2
Im[χ] (67)

The complex electric field then propagates according to:

Ẽ = Ẽ0 e
inrk0z e−nik0z (68)

The wavevector is increased by a factor of nr compared to the vacuum wavevector k0 = ω/c.
Therefore, nr is the ordinary index of refraction, also called the phase index. After a
distance z, the phase of the light wave will differ from what it would have been in vacuum by
an amount:

∆φ = (nr − 1)k0z (69)

The phase shift can be detected by measuring shifts of interference fringes in an interferometer.
The imaginary part ni causes absorption. The intensity I(z) of the light is proportional to

|Ẽ|2, so the intensity decays exponentially:

I(z) = I0e
−2nik0z (70)

= I0e
−az (71)

In the second line above we have introduced the absorption coefficient a:

a(ω) = 2nik0 (72)
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2.3.1 Phase Velocity and Group Velocity

Writing the effective wavevector as k = nrk0, we can obtain the phase velocity as:

vp =
ω

k
=

c

nr
(73)

The phase velocity gives the speed at which the phase fronts of the wave travel. If nr < 1, the
phase velocity would exceed c. Can this happen? Let’s see! For a dilute gas in the Lorentz
oscillator model, the phase index is:

nr ≈ 1 +
nae

2

2ε0m

ω2
0 − ω2

(ω2
0 − ω2)2 + γ2ω2

(74)

When ω > ω0, the second term is negative and we have nr < 1! However, the phase velocity
is an artificial quantity, and it does not represent the speed of information travel, so there is
no conflict with special relativity.

To find the speed of information travel, we need to look at the speed of a pulse, or wave
packet. This is called the group velocity and is given by:

vg =
1

dk/dω
= c

[
d(nrω)

dω

]−1
(75)

As it turns out, vg ≤ c, as required by relativity.

2.3.2 Absorption Cross Section

For a dilute gas, we can describe the absorption of light using the concept of an absorption
cross section. Imagine that each atom is actually an opaque object with a cross-sectional
area of σ. As light propagates, it would then be attenuated according to:

dI

dz
= −naσI (76)

This is called Beer’s law of absorption or the Beer-Lambert law. Comparing to our earlier
result (70) for light absorption, we see:

σ(ω) =
ω

ε0c
Im[α(ω)] (77)

where we have used the dilute gas approximation of (67).

3 Optical Forces on Atoms

The electric dipole moment of an atom interacts with light, leading to an potential energy
U . We will see that this potential energy is proportional to the light intensity in the Lorentz
oscillator model. According to classical mechanics, a gradient in potential energy leads to
a force through F = −∇U . Therefore, a gradient in light intensity will cause a force to be
exerted on an atom. This force is used to trap atoms and other polarizable particles using a
technique called optical tweezers or optical dipole trapping.

3.1 DC Electric Field

3.1.1 Potential Energy

As a warm-up, let’s first consider a static electric field E = E î. Consider a particle with DC
polarizability α = α(0), so that its dipole moment is dx = −ex = αE. Note that α is purely
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real at ω = 0. Increasing the electric field by an amount dE stores an energy dU in the system,
given by the Work-Energy Theorem from classical mechanics:

dU = −Fdx = −(−eE)dx = −E d(−ex) = −E d(αE) = −αE dE (78)

The potential energy of a polarizable particle in a static electric field of strength E is then:

U = −α
∫ E

0

E′ dE′ = −1

2
αE2 (79)

The electric field could have been chosen to point in any direction, so in general we can interpret
the E2 in (79) as the square of the magnitude of the field, E2 = E ·E. Since the dipole moment
is d = αE, we can also write this result as:

U = −1

2
d ·E (80)

As you can see from the above argument, the factor of 1
2 in equation (80) results from the

fact that the dipole is induced by the field. In contrast, a particle with a permanent dipole
moment simply has a potential energy −d ·E.

In the above derivation, we have implicitly assumed that the electric field is uniform.
Specifically, we assumed that the electric field is the same at the center of the atom as it is
at the position of the electron. To see this, recall that, rigorously speaking, x is actually the
displacement of the electron from the rest of the atom, x = xe − xn. The work done on the
atom by increasing the field is then proportional to Eedxe − Endxn, where Ee = E(xe) and
En = E(xn). By assuming Ee = En = E, we can factor out the E and get E dx as in equation
(78). For a non-uniform electric field, the final result in equations (79) and (80) is still accurate
as long as the electric field varies by only a small amount over the size of the atom.

3.1.2 Force in a Non-Uniform Field

Since an atom is neutral, a uniform electric field exerts no net force on the center of mass of
the atom. However, if the electric field varies with position, it will exert a non-zero force on
the atom. The force is given by:

F = −∇U =
1

2
α∇(E2) (81)

At first, (81) may seem counter-intuitive: it says that the direction of the force is along the
gradient of E2. But what if E points in the x direction, while its magnitude changes along the
y direction? The equation F = qE for the force on a charge suggests that the net force can
only be along the direction of E, i.e. the x direction in this example. How can the net force
be in the y direction? The resolution of this paradox lies in Maxwell’s equations. In vacuum,
a static electric field satisfies ∇ · E = 0 and ∇× E = 0. Therefore, if the x-component Ex of
the electric field varies along y, the field must have a non-zero y component. Specifically, from
the curl equation, ∂Ey/∂x = ∂Ex/∂y 6= 0, which means that Ey cannot be zero everywhere.
Since the field has a y component, it is able to exert a force in the y direction. Equation (81)
conveniently does not depend on the direction of E, so you can use it if you just know the
magnitude of the field.

The equation for the force on a polarizable particle in a non-uniform static electric field
can also be derived by considering the forces on the individual charges. Consider an atom with
center of mass position R = 0, its nucleus (and all but one of the electrons) centered at rn,
and one of its electrons displaced to the average position re. The i-th component of the net
force on the atom is:

Fi = −eEi(re) + eEi(rn) (82)

≈ −e(re · ∇)Ei|R=0 + e(rn · ∇)Ei|R=0 (83)

= −e [(re − rn) · ∇]Ei|R=0 (84)

≡ −e(r · ∇)Ei|R=0 (85)
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where Ei(re) and Ei(rn) have been Taylor expanded about R = 0 in the second line, and we
have defined r = re − rn. The Taylor expansion makes it clear that we are assuming the field
varies by a small amount over the size of the atom. Moving to vector notation for F, and
leaving the R = 0 implicit for simplicity, we have:

F = −e(r · ∇)E = α(E · ∇)E (86)

Here we have used the fact that the dipole moment is −er = d = αE. Finally, we need to use
a vector identity:

(E · ∇)E =
1

2
∇(E2)−E× (∇×E) (87)

Since the field is static, ∇×E = 0 and we finally obtain:

F =
1

2
α∇(E2) (88)

This shows that we get the same net force whether we start from the potential energy or from
the forces on the individual particles.

3.2 Optical Forces in an AC Field

Now we derive the force on a polarizable particle in a non-uniform electromagnetic field that
oscillates at angular frequency ω. We will use the method of calculating the total force on the
individual charges. First, since we’ve seen that a non-uniform field cannot point purely in the
x-direction in general, let’s write the electric field at position R in vector notation:

E(R, t) = E0(R) cos [ωt− φ(R)] (89)

Here E0(R) is assumed to vary slowly with R. The phase φ(R) describes the propagation
of the light. For light with wavevector k, φ(R) ≈ k · R. In addition to the k · R term in
the phase, there is also a contribution called the Gouy phase, however the exact form will
not be important here. In addition to the electric field, Maxwell’s equations require that the
electromagnetic wave also has a non-zero magnetic field B(R, t) ≈ B0(R) cos [ωt− φ(R)], with
B0 = k̂×E0/c.

To find the force on the atom, we must include the Lorentz force due the magnetic field:

F = −eEe + eEn − e
dre
dt
×Be + e

drn
dt
×Bn (90)

≈ (−er · ∇)E− edr
dt
×B (91)

In the first line, we used the abbreviations Ee = E(re), etc. In the second line, we have taken
the leading term in the Taylor expansions in re and rn, similar to what we did for the static
field case in equation (83). As before, we defined r = re − rn. We can now substitute in
expressions for −er from our treatment of the Lorentz oscillator:

−er = d = Re
[
α(ω)E0 e

−i(ωt−φ)
]

(92)

= Re [α(ω)] E0 cos(ωt− φ) + Im [α(ω)] E0 sin(ωt− φ) (93)

= αr(ω)E + αi(ω)E0 sin(ωt− φ) (94)

The first line is just a generalization of equations (26) and (27) to include the phase. In the
last time, we introduced the notation αr(ω) = Re [α(ω)] and αi(ω) = Im [α(ω)]. For the time
derivative, we get:

−edr
dt

= αr(ω)
∂E

∂t
+ ω αi(ω)E0 cos(ωt− φ) (95)

= αr(ω)
∂E

∂t
+ ω αi(ω)E (96)
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In the above, we have assumed that the velocity of the atom is initially zero, so that d
dtE(R(t), t) =

∂E/∂t.
When we calculate the force, we will average it over a time that is large compared to

the period 2π/ω of the light. We use the following property of time averages of sinusoidal
functions:

〈cos(ωt) sin(ωt)〉t = 0 (97)

The time-averaged force is then:

〈F〉t =

〈
(−er · ∇)E− edr

dt
×B

〉
t

(98)

=

〈
αr(ω)(E · ∇)E + αr(ω)

∂E

∂t
×B + ω αi(ω)E×B

〉
t

(99)

In the above, we used (97) to eliminate the second term coming from (94). We can now use
the vector identity (87) along with the Maxwell equation ∇×E = −∂B/∂t to get:

〈F〉t =

〈
αr(ω)

[
1

2
∇(E2) +

∂

∂t
(E×B)

]
+ ω αi(ω)E×B

〉
t

(100)

The quantity E × B is proportional to the Poynting vector S = (E × B)/µ0. The Poynting
vector gives the flux of energy carried by the electromagnetic wave. Assuming a steady (CW)
laser beam, the time derivative of S will average to zero, allowing us to drop the middle term
in (100). Meanwhile, the time-average of the Poynting vector is related to the light intensity
I and the direction of propagation k̂ of the light wave:

〈S〉 = Ik̂ (101)

The time-average of E2 is also proportional to I:〈
E2
〉

=
I

ε0c
(102)

The time-averaged force can then be written as a sum of two terms:

〈F〉t = Fdipole + Fscatt (103)

where the first term is due to the real part of α(ω):

Fdipole =
αr(ω)

2ε0c
∇I (104)

and the second term is due to the imaginary part of α(ω):

Fscatt = ωαi(ω)µ0I k̂ (105)

3.3 Dipole Potential

The “dipole” force Fdipole can be interpreted as resulting from the potential energy of the
induced atomic dipole in the electric field of the light. To see this, we note that Fdipole can be
written as the gradient of a potential function:

Fdipole = ∇
〈

1

2
αr(ω)E2

〉
t

≡ −∇Udipole (106)

So the dipole potential is:

Udipole = −1

2
αr(ω)

〈
E2
〉
t

(107)

= −αr(ω)

2ε0c
I (108)
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On the other hand, the time average of d ·E is:

〈d ·E〉t = 〈αr(ω)E ·E〉t = αr(ω)
〈
E2
〉
t

(109)

So we can also write the dipole potential as:

Udipole = −1

2
〈d ·E〉t (110)

Equation (110) is the time average of the equation for the potential energy of an induced
DC dipole (80), which makes a nice connection between the DC and AC cases. In practice,
equation (108) is the most useful form of the dipole potential here, because it involves the light
intensity, which is usually measured in experiments.

3.4 Radiation Pressure Force

The “scattering” force Fscatt results from the momentum transfered to the atom as it scatters
light from the laser beam. This force is also referred to as radiation pressure because it is
exerted in the direction of the light propagation k̂. The scattering force is not a conservative
force in the sense that it cannot generally be written as the gradient of a potential energy. To
see this, you can check that the curl of the force is non-zero:

∇× Fscatt = [ωαi(ω)µ0∇I]× k̂ 6= 0 (111)

To see that this is non-zero, note that the gradient of the intensity of a laser beam points
mostly in the transverse direction, while k̂ points in the longitudinal direction, so their cross
product is non-zero. Since ∇× Fscatt is non-zero, the vector field Fscatt cannot be written as
the gradient of a scalar function.

Since the scattering force is not conservative, it can dissipate energy from the system. This
fact is exploited in laser cooling to cool gases of atoms or other particles to near absolute
zero temperature. In laser cooling, energy from the atomic motion is irreversibly transferred
to the electromagnetic field through light scattering. On the other hand, light scattering can
also lead to heating, depending on the situation.
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