The Lorentz Oscillator Model

Ariel Sommer

January 22, 2020

Contents

1 The Atom as a Harmonic Oscillator 1
1.1 Driven Oscillation of the Electron 1
1.1.1 Complex Representations 3
1.2 Electric Polarization of the Atom 3
1.2.1 Vector Notation 4
1.3 Polarization and Intensity of Light 4
1.4 Oscillator Strength 4
1.5 Radiative Damping 5
2 Light Propagation in an Atomic Medium 5
2.1 Polarization Density and Susceptiblity 5
2.2 Electromagnetic Waves 6
2.3 Phase Shift and Absorption 7
2.3.1 Phase Velocity and Group Velocity 8
2.3.2 Absorption Cross Section 8
3 Optical Forces on Atoms 8
3.1 DC Electric Field 8
3.1.1 Potential Energy 8
3.1.2 Force in a Non-Uniform Field 9
3.2 Optical Forces in an AC Field 10
3.3 Dipole Potential 11
3.4 Radiation Pressure Force 12

1 The Atom as a Harmonic Oscillator

The Lorentz oscillator model treats the atom as a classical harmonic oscillator interacting with light. This model makes accurate predictions in some situations and it will help us understand the quantum mechanical model of atom-light interactions.

1.1 Driven Oscillation of the Electron

When light shines on an atom, it causes one of the electrons to oscillate. If the light is weak enough, the oscillations will be small and we can approximate the atom as a harmonic oscillator. Experimentally, we know that atoms have discrete resonant frequencies. Suppose we want to model just one of those resonances. We can then describe the average x position of an electron relative to the nucleus using the differential equation for a driven, damped harmonic oscillator:

$$
\begin{equation*}
\ddot{x}+\gamma \dot{x}+\omega_{0}^{2} x=-e E_{x}(t) / m \tag{1}
\end{equation*}
$$

Here γ is the damping rate of the oscillator, ω_{0} is the angular frequency of the resonance, the electron charge is $-e$, and m is the reduced mass of the electron and the nucleus, $m \approx m_{e}$. The x-component of the electric field at the position of the atom is $E_{x}(t)$. We make the approximation $E_{x}(\mathbf{r}, t) \approx E_{x}(0, t) \equiv E_{x}(t)$, which is valid when the wavelength of the light is much larger than the size of the atom so that the electric field is uniform across the atom. We consider light that is monochromatic, linearly polarized in the x direction, and propagating in the z direction. The electric field of the light at the location of the atom is then:

$$
\begin{equation*}
E_{x}(t)=E_{0} \cos (\omega t)=\operatorname{Re}\left[E_{0} e^{-i \omega t}\right] \tag{2}
\end{equation*}
$$

For convenience, we choose the phase of the oscillation such that it is represented by cosine, although the final results would be the same for any choice of phase. Note that in writing (1), we are neglecting the Lorentz force due to the magnetic field of the light, which is a factor of \dot{z} / c smaller that the force due to the electric field.

The electric field (2) describes a continuous-wave (CW) light field like that produced by a CW (i.e. non-pulsed) laser. We will use the Lorentz oscillator model to understand the propagation of the light through a vapor of atoms, and to predict the forces exerted by the light on the atoms. To do so, we will employ the steady-state solution for $x(t)$, which oscillates at frequency ω. We write the steady-state solution in the form:

$$
\begin{equation*}
x(t)=\operatorname{Re}\left[\tilde{x} e^{-i \omega t}\right] \tag{3}
\end{equation*}
$$

where \tilde{x} is a complex number. The phase of \tilde{x} tells us the phase of the oscillation relative to the electric field. In the language of inhomogeneous linear differential equations, (3) is a "particular solution." It is also the steady-state solution, because the homogeneous solutions to (1) decay to zero at a rate of γ. Plugging (3) into (1) gives:

$$
\begin{align*}
& -\omega^{2} \tilde{x}-i \omega \gamma \tilde{x}+\omega_{0}^{2} \tilde{x}=-\frac{e}{m} E_{0} \tag{4}\\
& \longrightarrow \tilde{x}=\frac{-e E_{0} / m}{\omega_{0}^{2}-\omega^{2}-i \gamma \omega} \tag{5}
\end{align*}
$$

The real part of \tilde{x} describes the in-phase response of the oscillator, while the imaginary part represents the out-of-phase response. To see this explicitly, we write \tilde{x} in terms of its real and imaginary parts:

$$
\begin{equation*}
\tilde{x}=\mathcal{U}-i \mathcal{V} \tag{6}
\end{equation*}
$$

(the minus sign is included to be consistent with other references). The real and imaginary parts are:

$$
\begin{align*}
\mathcal{U} & =\frac{-e E_{0}}{m} \frac{\omega_{0}^{2}-\omega^{2}}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+(\omega \gamma)^{2}} \tag{7}\\
\mathcal{V} & =\frac{e E_{0}}{m} \frac{\gamma \omega}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+(\omega \gamma)^{2}} \tag{8}
\end{align*}
$$

The real position $x(t)$ of the oscillator is then:

$$
\begin{align*}
x(t) & =\operatorname{Re}\left[(\mathcal{U}-i \mathcal{V}) e^{-i \omega t}\right] \tag{9}\\
& =\mathcal{U} \cos (\omega t)-\mathcal{V} \sin (\omega t) \tag{10}
\end{align*}
$$

which shows that \mathcal{U} is the amplitude of the in-phase response and \mathcal{V} is the amplitude of the out-of-phase response (also called the in-quadrature response, because \mathcal{U} and \mathcal{V} can be represented as the legs of a right triangle in the complex plane).

The response can also be represented in terms of its amplitude and phase:

$$
\begin{equation*}
\tilde{x}=\sqrt{\mathcal{U}^{2}+\mathcal{V}^{2}} e^{-i \delta} \tag{11}
\end{equation*}
$$

where the phase is:

$$
\begin{equation*}
\delta=\cos ^{-1}\left(\mathcal{U} / \sqrt{\mathcal{U}^{2}+\mathcal{V}^{2}}\right) \tag{12}
\end{equation*}
$$

The position of the oscillator in terms of the phase shift is then:

$$
\begin{equation*}
x(t)=\operatorname{Re}\left[\sqrt{\mathcal{U}^{2}+\mathcal{V}^{2}} e^{-i(\delta+\omega t)}\right]=\sqrt{\mathcal{U}^{2}+\mathcal{V}^{2}} \cos (\omega t+\delta) \tag{13}
\end{equation*}
$$

1.1.1 Complex Representations

We can think of \tilde{x} as the complex representation of $x(t)$. In general, given any quantity $q(t)$ that oscillates at angular frequency ω, we can define its complex amplitude \tilde{q} via

$$
\begin{equation*}
q(t)=\operatorname{Re}\left[\tilde{q} e^{-i \omega t}\right] \tag{14}
\end{equation*}
$$

The complex phase of \tilde{q} encodes the phase of the oscillation. The quantity \tilde{q} is often called a phasor.

1.2 Electric Polarization of the Atom

When the average position of the electron is displaced from the center of the atom, the atom has an electric dipole moment. The dipole moment will tell us a lot about how the atom interacts with light. Recall that the electric dipole moment of a collection of particles is defined as:

$$
\begin{equation*}
\mathbf{d}=\sum_{j} q_{j} \mathbf{r}_{j} \tag{15}
\end{equation*}
$$

where q_{j} and \mathbf{r}_{j} are the charge and position of the j-th particle. For an atom excited by laser light, the excited electron has charge $-e$ and position \mathbf{r}_{e}, while the nucleus together with all the other electrons have charge e and average position \mathbf{r}_{n}. Defining the displacement $\mathbf{r}=\mathbf{r}_{e}-\mathbf{r}_{n}$, the dipole moment of the atom is then

$$
\begin{align*}
\mathbf{d} & =-e \mathbf{r}_{e}+e \mathbf{r}_{n} \tag{16}\\
& =-e \mathbf{r} \tag{17}
\end{align*}
$$

For discussion of light that is linearly polarized in the x, or $\hat{\mathbf{i}}$, direction, the dipole moment becomes:

$$
\begin{equation*}
\mathbf{d}(t)=d_{x}(t) \hat{\mathbf{i}} \quad \text { with } \quad d_{x}(t)=-e x(t) \tag{18}
\end{equation*}
$$

As with the position, we can describe the dipole moment in a complex representation:

$$
\begin{equation*}
d_{x}(t)=-e \operatorname{Re}\left[\tilde{x} e^{-i \omega t}\right]=\operatorname{Re}\left[\tilde{d}_{x} e^{-i \omega t}\right] \tag{19}
\end{equation*}
$$

where

$$
\begin{align*}
\tilde{d}_{x} & =-e \tilde{x} \tag{20}\\
& =\frac{e^{2} E_{0} / m}{\omega_{0}^{2}-\omega^{2}-i \gamma \omega} \tag{21}
\end{align*}
$$

Equation (21) shows that the amplitude of the atomic polarization is proportional to the amplitude of the electric field. We define the polarizability $\alpha(\omega)$ of the atom as the proportionality constant (at the given frequency ω):

$$
\begin{equation*}
\tilde{d}_{x}=\alpha(\omega) E_{0} \tag{22}
\end{equation*}
$$

The polarizability is therefore:

$$
\begin{equation*}
\alpha(\omega)=\frac{e^{2} / m}{\omega_{0}^{2}-\omega^{2}-i \gamma \omega} \tag{23}
\end{equation*}
$$

Near resonance, $\omega \approx \omega_{0}$, and we can approximate:

$$
\begin{equation*}
\alpha(\omega) \approx-\frac{e^{2}}{2 m \omega_{0}}\left(\frac{1}{\Delta+i \gamma / 2}\right) \tag{24}
\end{equation*}
$$

where $\Delta=\omega-\omega_{0}$.

1.2.1 Vector Notation

For an electric field in an arbitrary direction, the complex representation is:

$$
\begin{equation*}
\mathbf{E}(t)=\mathbf{E}_{0} \cos (\omega t)=\operatorname{Re}\left[\mathbf{E}_{0} e^{-i \omega t}\right] \tag{25}
\end{equation*}
$$

We define the complex representation of the dipole moment as:

$$
\begin{equation*}
\mathbf{d}(t)=\operatorname{Re}\left[\widetilde{\mathbf{d}} e^{-i \omega t}\right] \tag{26}
\end{equation*}
$$

The complex dipole moment is then related to the electric field by:

$$
\begin{equation*}
\widetilde{\mathbf{d}}=\alpha(\omega) \mathbf{E}_{0} \tag{27}
\end{equation*}
$$

1.3 Polarization and Intensity of Light

So far we have assumed linearly polarized light. We can describe elliptically polarized light by using complex notation:

$$
\begin{align*}
\mathbf{E}(t) & =\operatorname{Re}\left[\widetilde{\mathbf{E}} e^{-i \omega t}\right] \tag{28}\\
& =\operatorname{Re}[\widetilde{\mathbf{E}}] \cos (\omega t)+\operatorname{Im}[\widetilde{\mathbf{E}}] \sin (\omega t) \tag{29}
\end{align*}
$$

In that case, the complex dipole moment of the atom is:

$$
\begin{equation*}
\widetilde{\mathbf{d}}=\alpha(\omega) \widetilde{\mathbf{E}} \tag{30}
\end{equation*}
$$

As an example, we can describe a plane wave propagating in the z direction with circular polarization in the $x-y$ plane using $\widetilde{\mathbf{E}}=\frac{1}{\sqrt{2}} E_{0} e^{i k z}(1, i, 0)$.

In general, we describe the polarization of light using a complex unit vector $\hat{\varepsilon}$ which we call the polarization vector:

$$
\begin{equation*}
\widetilde{\mathbf{E}}=E_{0} \hat{\varepsilon} e^{i k z} \tag{31}
\end{equation*}
$$

where E_{0} is real and $\hat{\varepsilon}^{*} \cdot \hat{\varepsilon}=1$. Some common cases:

$$
\begin{array}{ll}
\text { linear polarization along } z: & \hat{\varepsilon}=\hat{\mathbf{z}} \\
\text { right-hand circular polarization about } z: & \hat{\varepsilon}=\frac{1}{\sqrt{2}}(\hat{\mathbf{x}}+i \hat{\mathbf{y}}) \tag{32}\\
\text { left-hand circular polarization about } z: & \hat{\varepsilon}=\frac{1}{\sqrt{2}}(\hat{\mathbf{x}}-i \hat{\mathbf{y}})
\end{array}
$$

For arbitrary polarization $\hat{\varepsilon}$, the time-averaged intensity of the light is:

$$
\begin{align*}
I & =c \epsilon_{0}\langle\mathbf{E} \cdot \mathbf{E}\rangle_{t} \tag{33}\\
& =\frac{1}{2} c \epsilon_{0} E_{0}^{2} \tag{34}
\end{align*}
$$

1.4 Oscillator Strength

The classical result for the polarizability of an atom is almost correct, but quantum mechanics makes two modifications. The first is just a reminder that the harmonic oscillator approximation is only valid for weak fields. For stronger fields, we will see in the quantum treatment that the response of the atom becomes nonlinear and $\alpha(\omega)$ essentially becomes dependent on the light intensity. The second modification is that, even for weak fields, we must include a correction factor called the oscillator strength. For the transition from the ground state to the j-th excited state, we write the oscillator strength as $f_{0 j} \geq 0$. The oscillator strength
modifies the sensitivity of the atom to the electric field, and can be including by replacing $E_{x} \rightarrow f_{0 j} E_{x}$ in equation (1). The polarizability due to the 0 -to- j transition is then:

$$
\begin{align*}
\alpha_{0 j}(\omega) & =\frac{f_{0 j} e^{2} / m}{\omega_{j 0}^{2}-\omega^{2}-i \gamma_{j} \omega} \tag{35}\\
& \approx-\frac{e^{2} f_{0 j}}{2 m \omega_{j 0}}\left(\frac{1}{\omega-\omega_{j 0}+i \gamma_{j} / 2}\right) \tag{36}
\end{align*}
$$

Here $\omega_{j 0}$ is the resonant frequency of the 0 -to- j transition and γ_{j} is the decay rate of the j-th excited state. The total polarizability of the atom in the ground state is then given by a sum over the excited states:

$$
\begin{equation*}
\alpha_{0}(\omega)=\sum_{j} \alpha_{0 j}(\omega) \tag{37}
\end{equation*}
$$

Qualitatively, the oscillator strength accounts for the fact that the atom has many resonances. It can be loosely interpreted as the probability that the atom will behave as a harmonic oscillator with resonant frequency $\omega_{j 0}$. This interpretation is supported by the fact that the oscillator strengths sum to unity:

$$
\begin{equation*}
\sum_{j} f_{0 j}=1 \tag{38}
\end{equation*}
$$

This result is known as the Thomas-Reiche-Kuhn sum rule and is proven nicely in the notes by Steck, Section 1.2, and in the book by Metcalf in appendix 3.A. It is also worth noting that the oscillator strength depends on the polarization of the light.

1.5 Radiative Damping

Classical electrodynamics predicts that an oscillating charge should radiate energy. For our model of an electron undergoing harmonic oscillation, the classical damping rate is:

$$
\begin{equation*}
\gamma_{c l}=\frac{e^{2} \omega^{2}}{6 \pi \epsilon_{0} m_{e} c^{3}} \tag{39}
\end{equation*}
$$

2 Light Propagation in an Atomic Medium

2.1 Polarization Density and Susceptiblity

If we have a gas of atoms with number density $n_{a}(\mathbf{R})$ and each atom near position \mathbf{R} has dipole moment $\mathbf{d}(t)$, then the polarization density is

$$
\begin{equation*}
\mathbf{P}=n_{a} \mathbf{d} \tag{40}
\end{equation*}
$$

In the complex representation, the complex polarization density is then:

$$
\begin{equation*}
\widetilde{\mathbf{P}}=n_{a} \widetilde{\mathbf{d}}=n_{a} \alpha(\omega) \widetilde{\mathbf{E}} \tag{41}
\end{equation*}
$$

where we have used the general result for the dipole moment (30) in the second equation. Meanwhile, in electricity and magnetism, the complex susceptibility χ is defined as:

$$
\begin{equation*}
\widetilde{\mathbf{P}}=\epsilon_{0} \chi(\omega) \widetilde{\mathbf{E}} \tag{42}
\end{equation*}
$$

The susceptibility is therefore related to the polarizability by:

$$
\begin{equation*}
\chi(\omega)=\frac{n_{a}}{\epsilon_{0}} \alpha(\omega) \tag{43}
\end{equation*}
$$

Although it's not obvious, you can check that χ is a dimensionless number. For a dilute gas (i.e. small density of atoms), $|\chi| \ll 1$.

2.2 Electromagnetic Waves

A medium, such as an atomic gas, that develops a polarization in response to an electric field is called a dielectric medium. The medium can also have a magnetic response, leading to a magnetization density \mathbf{M}. In a moment, we will assume $\mathbf{M}=0$, but for now we keep it. Maxwell's equations in a material are expressed with the help of auxiliary fields \mathbf{D} and \mathbf{H}, given by:

$$
\begin{align*}
\mathbf{D} & =\epsilon_{0} \mathbf{E}+\mathbf{P} \tag{44}\\
\mathbf{H} & =\frac{1}{\mu_{0}} \mathbf{B}+\mathbf{M} \tag{45}
\end{align*}
$$

We will assume that the free charge ρ_{f} and free current \mathbf{J}_{f} are zero, meaning there are no extra charges or currents other than the atoms themselves. Maxwell's equations are then:

$$
\begin{align*}
\nabla \cdot \mathbf{B} & =0 \tag{46}\\
\nabla \times \mathbf{E} & =-\frac{\partial \mathbf{B}}{\partial t} \tag{47}\\
\nabla \cdot \mathbf{D} & =0 \tag{48}\\
\nabla \times \mathbf{H} & =\frac{\partial \mathbf{D}}{\partial t} \tag{49}
\end{align*}
$$

Since we are considering a linear medium, where the polarization density is a linear response to the electric field, we can also show that the divergence of the electric field is zero:

$$
\begin{equation*}
\nabla \cdot \mathbf{E}=0 \tag{50}
\end{equation*}
$$

Now assuming $\mathbf{M}=0$ for simplicity, we can also write:

$$
\begin{equation*}
\mathbf{B}=\mu_{0} \mathbf{H} \tag{51}
\end{equation*}
$$

We can use these equations to find a wave equation for the electric field. To do so, we will use the vector calculus identity $\nabla \times(\nabla \times \mathbf{E})=-\nabla^{2} \mathbf{E}+\nabla(\nabla \cdot \mathbf{E})$ together with $\nabla \cdot \mathbf{E}=0$ to get:

$$
\begin{align*}
\nabla^{2} \mathbf{E} & =-\nabla \times(\nabla \times \mathbf{E}) \tag{52}\\
& =\nabla \times \frac{\partial \mathbf{B}}{\partial t}=\mu_{0} \nabla \times \frac{\partial \mathbf{H}}{\partial t} \tag{53}\\
& =\mu_{0} \frac{\partial^{2} \mathbf{D}}{\partial t^{2}} \tag{54}
\end{align*}
$$

We will solve the wave equation for a monochromatic field of the form:

$$
\begin{equation*}
\mathbf{E}=\operatorname{Re}\left[\widetilde{\mathbf{E}} e^{-i \omega t}\right] \tag{55}
\end{equation*}
$$

where $\widetilde{\mathbf{E}}=\widetilde{\mathbf{E}}\left(\mathbf{r}^{\prime}\right)$ is a function of position \mathbf{r}^{\prime}. Using the definition (42) of $\chi(\omega)$ the polarization density is:

$$
\begin{equation*}
\mathbf{P}=\operatorname{Re}\left[\epsilon_{0} \chi(\omega) \widetilde{\mathbf{E}} e^{-i \omega t}\right] \tag{56}
\end{equation*}
$$

The definition (44) of the "displacement field" \mathbf{D} gives:

$$
\begin{equation*}
\mathbf{D}=\operatorname{Re}\left[\epsilon_{0}(1+\chi) \widetilde{\mathbf{E}} e^{-i \omega t}\right] \tag{57}
\end{equation*}
$$

Substituting the equations (55) and (57) for \mathbf{E} and \mathbf{D} in the wave equation (54) gives:

$$
\begin{equation*}
\nabla^{2} \widetilde{\mathbf{E}}=-k_{0}^{2}(1+\chi) \widetilde{\mathbf{E}} \tag{58}
\end{equation*}
$$

where we have introduced the definition

$$
\begin{equation*}
k_{0}=\omega / c \tag{59}
\end{equation*}
$$

and c is the speed of light in vacuum:

$$
\begin{equation*}
c=\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}} \tag{60}
\end{equation*}
$$

We can solve the differential equation (58) for $\widetilde{\mathbf{E}}$ for a plane wave traveling in the z direction:

$$
\begin{equation*}
\widetilde{\mathbf{E}}=\widetilde{\mathbf{E}}_{0} e^{i \widetilde{k} z} \tag{61}
\end{equation*}
$$

where \tilde{k} is a complex number. Plugging our plane wave (61) into the differential equation (58) for $\widetilde{\mathbf{E}}$ gives:

$$
\begin{equation*}
\tilde{k}=k_{0} \sqrt{1+\chi} \tag{62}
\end{equation*}
$$

Here we have chosen the positive square root to describe motion in the $+z$ direction. Since χ is complex, $\sqrt{1+\chi}$ is a complex number. We call it the complex index of refraction \tilde{n} :

$$
\begin{align*}
\tilde{n} & =\sqrt{1+\chi} \tag{63}\\
& \approx 1+\frac{1}{2} \chi \tag{64}
\end{align*}
$$

where the second line uses the Taylor expansion for $|\chi| \ll 1$, valid for a dilute gas. Formally, we have now solved for the electric field of a plane wave in an atom medium. Collecting the above results, we can write our solution as:

$$
\begin{equation*}
\widetilde{\mathbf{E}}=\widetilde{\mathbf{E}}_{0} e^{i n k_{0} z} \tag{65}
\end{equation*}
$$

In the next section we will study the physical meaning of this solution. We will see that the real part of \tilde{n} corresponds to the usual index of refraction and leads to a phase shift of the light, while the imaginary part of \tilde{n} leads to absorption of the light.

2.3 Phase Shift and Absorption

We separate \tilde{n} into real and imaginary parts:

$$
\begin{align*}
& n_{r}=\operatorname{Re}[\tilde{n}] \approx 1+\frac{1}{2} \operatorname{Re}[\chi] \tag{66}\\
& n_{i}=\operatorname{Im}[\tilde{n}] \approx \frac{1}{2} \operatorname{Im}[\chi] \tag{67}
\end{align*}
$$

The complex electric field then propagates according to:

$$
\begin{equation*}
\widetilde{\mathbf{E}}=\widetilde{\mathbf{E}}_{0} e^{i n_{r} k_{0} z} e^{-n_{i} k_{0} z} \tag{68}
\end{equation*}
$$

The wavevector is increased by a factor of n_{r} compared to the vacuum wavevector $k_{0}=\omega / c$. Therefore, n_{r} is the ordinary index of refraction, also called the phase index. After a distance z, the phase of the light wave will differ from what it would have been in vacuum by an amount:

$$
\begin{equation*}
\Delta \phi=\left(n_{r}-1\right) k_{0} z \tag{69}
\end{equation*}
$$

The phase shift can be detected by measuring shifts of interference fringes in an interferometer.
The imaginary part n_{i} causes absorption. The intensity $I(z)$ of the light is proportional to $|\widetilde{\mathbf{E}}|^{2}$, so the intensity decays exponentially:

$$
\begin{align*}
I(z) & =I_{0} e^{-2 n_{i} k_{0} z} \tag{70}\\
& =I_{0} e^{-a z} \tag{71}
\end{align*}
$$

In the second line above we have introduced the absorption coefficient a :

$$
\begin{equation*}
a(\omega)=2 n_{i} k_{0} \tag{72}
\end{equation*}
$$

2.3.1 Phase Velocity and Group Velocity

Writing the effective wavevector as $k=n_{r} k_{0}$, we can obtain the phase velocity as:

$$
\begin{equation*}
v_{p}=\frac{\omega}{k}=\frac{c}{n_{r}} \tag{73}
\end{equation*}
$$

The phase velocity gives the speed at which the phase fronts of the wave travel. If $n_{r}<1$, the phase velocity would exceed c. Can this happen? Let's see! For a dilute gas in the Lorentz oscillator model, the phase index is:

$$
\begin{equation*}
n_{r} \approx 1+\frac{n_{a} e^{2}}{2 \epsilon_{0} m} \frac{\omega_{0}^{2}-\omega^{2}}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}} \tag{74}
\end{equation*}
$$

When $\omega>\omega_{0}$, the second term is negative and we have $n_{r}<1$! However, the phase velocity is an artificial quantity, and it does not represent the speed of information travel, so there is no conflict with special relativity.

To find the speed of information travel, we need to look at the speed of a pulse, or wave packet. This is called the group velocity and is given by:

$$
\begin{equation*}
v_{g}=\frac{1}{d k / d \omega}=c\left[\frac{d\left(n_{r} \omega\right)}{d \omega}\right]^{-1} \tag{75}
\end{equation*}
$$

As it turns out, $v_{g} \leq c$, as required by relativity.

2.3.2 Absorption Cross Section

For a dilute gas, we can describe the absorption of light using the concept of an absorption cross section. Imagine that each atom is actually an opaque object with a cross-sectional area of σ. As light propagates, it would then be attenuated according to:

$$
\begin{equation*}
\frac{d I}{d z}=-n_{a} \sigma I \tag{76}
\end{equation*}
$$

This is called Beer's law of absorption or the Beer-Lambert law. Comparing to our earlier result (70) for light absorption, we see:

$$
\begin{equation*}
\sigma(\omega)=\frac{\omega}{\epsilon_{0} c} \operatorname{Im}[\alpha(\omega)] \tag{77}
\end{equation*}
$$

where we have used the dilute gas approximation of (67).

3 Optical Forces on Atoms

The electric dipole moment of an atom interacts with light, leading to an potential energy U. We will see that this potential energy is proportional to the light intensity in the Lorentz oscillator model. According to classical mechanics, a gradient in potential energy leads to a force through $\mathbf{F}=-\nabla U$. Therefore, a gradient in light intensity will cause a force to be exerted on an atom. This force is used to trap atoms and other polarizable particles using a technique called optical tweezers or optical dipole trapping.

3.1 DC Electric Field

3.1.1 Potential Energy

As a warm-up, let's first consider a static electric field $\mathbf{E}=E \hat{\mathbf{i}}$. Consider a particle with DC polarizability $\alpha=\alpha(0)$, so that its dipole moment is $d_{x}=-e x=\alpha E$. Note that α is purely
real at $\omega=0$. Increasing the electric field by an amount $d E$ stores an energy $d U$ in the system, given by the Work-Energy Theorem from classical mechanics:

$$
\begin{equation*}
d U=-F d x=-(-e E) d x=-E d(-e x)=-E d(\alpha E)=-\alpha E d E \tag{78}
\end{equation*}
$$

The potential energy of a polarizable particle in a static electric field of strength E is then:

$$
\begin{equation*}
U=-\alpha \int_{0}^{E} E^{\prime} d E^{\prime}=-\frac{1}{2} \alpha E^{2} \tag{79}
\end{equation*}
$$

The electric field could have been chosen to point in any direction, so in general we can interpret the E^{2} in (79) as the square of the magnitude of the field, $E^{2}=\mathbf{E} \cdot \mathbf{E}$. Since the dipole moment is $\mathbf{d}=\alpha \mathbf{E}$, we can also write this result as:

$$
\begin{equation*}
U=-\frac{1}{2} \mathbf{d} \cdot \mathbf{E} \tag{80}
\end{equation*}
$$

As you can see from the above argument, the factor of $\frac{1}{2}$ in equation (80) results from the fact that the dipole is induced by the field. In contrast, a particle with a permanent dipole moment simply has a potential energy $-\mathbf{d} \cdot \mathbf{E}$.

In the above derivation, we have implicitly assumed that the electric field is uniform. Specifically, we assumed that the electric field is the same at the center of the atom as it is at the position of the electron. To see this, recall that, rigorously speaking, x is actually the displacement of the electron from the rest of the atom, $x=x_{e}-x_{n}$. The work done on the atom by increasing the field is then proportional to $E_{e} d x_{e}-E_{n} d x_{n}$, where $E_{e}=E\left(x_{e}\right)$ and $E_{n}=E\left(x_{n}\right)$. By assuming $E_{e}=E_{n}=E$, we can factor out the E and get $E d x$ as in equation (78). For a non-uniform electric field, the final result in equations (79) and (80) is still accurate as long as the electric field varies by only a small amount over the size of the atom.

3.1.2 Force in a Non-Uniform Field

Since an atom is neutral, a uniform electric field exerts no net force on the center of mass of the atom. However, if the electric field varies with position, it will exert a non-zero force on the atom. The force is given by:

$$
\begin{equation*}
\mathbf{F}=-\nabla U=\frac{1}{2} \alpha \nabla\left(E^{2}\right) \tag{81}
\end{equation*}
$$

At first, (81) may seem counter-intuitive: it says that the direction of the force is along the gradient of E^{2}. But what if \mathbf{E} points in the x direction, while its magnitude changes along the y direction? The equation $\mathbf{F}=q \mathbf{E}$ for the force on a charge suggests that the net force can only be along the direction of \mathbf{E}, i.e. the x direction in this example. How can the net force be in the y direction? The resolution of this paradox lies in Maxwell's equations. In vacuum, a static electric field satisfies $\nabla \cdot \mathbf{E}=0$ and $\nabla \times \mathbf{E}=0$. Therefore, if the x-component E_{x} of the electric field varies along y, the field must have a non-zero y component. Specifically, from the curl equation, $\partial E_{y} / \partial x=\partial E_{x} / \partial y \neq 0$, which means that E_{y} cannot be zero everywhere. Since the field has a y component, it is able to exert a force in the y direction. Equation (81) conveniently does not depend on the direction of \mathbf{E}, so you can use it if you just know the magnitude of the field.

The equation for the force on a polarizable particle in a non-uniform static electric field can also be derived by considering the forces on the individual charges. Consider an atom with center of mass position $\mathbf{R}=0$, its nucleus (and all but one of the electrons) centered at \mathbf{r}_{n}, and one of its electrons displaced to the average position \mathbf{r}_{e}. The i-th component of the net force on the atom is:

$$
\begin{align*}
F_{i} & =-e E_{i}\left(\mathbf{r}_{e}\right)+e E_{i}\left(\mathbf{r}_{n}\right) \tag{82}\\
& \approx-\left.e\left(\mathbf{r}_{e} \cdot \nabla\right) E_{i}\right|_{\mathbf{R}=0}+\left.e\left(\mathbf{r}_{n} \cdot \nabla\right) E_{i}\right|_{\mathbf{R}=0} \tag{83}\\
& =-\left.e\left[\left(\mathbf{r}_{e}-\mathbf{r}_{n}\right) \cdot \nabla\right] E_{i}\right|_{\mathbf{R}=0} \tag{84}\\
& \equiv-\left.e(\mathbf{r} \cdot \nabla) E_{i}\right|_{\mathbf{R}=0} \tag{85}
\end{align*}
$$

where $E_{i}\left(\mathbf{r}_{e}\right)$ and $E_{i}\left(\mathbf{r}_{n}\right)$ have been Taylor expanded about $\mathbf{R}=0$ in the second line, and we have defined $\mathbf{r}=\mathbf{r}_{e}-\mathbf{r}_{n}$. The Taylor expansion makes it clear that we are assuming the field varies by a small amount over the size of the atom. Moving to vector notation for \mathbf{F}, and leaving the $\mathbf{R}=0$ implicit for simplicity, we have:

$$
\begin{equation*}
\mathbf{F}=-e(\mathbf{r} \cdot \nabla) \mathbf{E}=\alpha(\mathbf{E} \cdot \nabla) \mathbf{E} \tag{86}
\end{equation*}
$$

Here we have used the fact that the dipole moment is $-e \mathbf{r}=\mathbf{d}=\alpha \mathbf{E}$. Finally, we need to use a vector identity:

$$
\begin{equation*}
(\mathbf{E} \cdot \nabla) \mathbf{E}=\frac{1}{2} \nabla\left(E^{2}\right)-\mathbf{E} \times(\nabla \times \mathbf{E}) \tag{87}
\end{equation*}
$$

Since the field is static, $\nabla \times \mathbf{E}=0$ and we finally obtain:

$$
\begin{equation*}
\mathbf{F}=\frac{1}{2} \alpha \nabla\left(E^{2}\right) \tag{88}
\end{equation*}
$$

This shows that we get the same net force whether we start from the potential energy or from the forces on the individual particles.

3.2 Optical Forces in an AC Field

Now we derive the force on a polarizable particle in a non-uniform electromagnetic field that oscillates at angular frequency ω. We will use the method of calculating the total force on the individual charges. First, since we've seen that a non-uniform field cannot point purely in the x-direction in general, let's write the electric field at position \mathbf{R} in vector notation:

$$
\begin{equation*}
\mathbf{E}(\mathbf{R}, t)=\mathbf{E}_{0}(\mathbf{R}) \cos [\omega t-\phi(\mathbf{R})] \tag{89}
\end{equation*}
$$

Here $\mathbf{E}_{0}(\mathbf{R})$ is assumed to vary slowly with \mathbf{R}. The phase $\phi(\mathbf{R})$ describes the propagation of the light. For light with wavevector $\mathbf{k}, \phi(\mathbf{R}) \approx \mathbf{k} \cdot \mathbf{R}$. In addition to the $\mathbf{k} \cdot \mathbf{R}$ term in the phase, there is also a contribution called the Gouy phase, however the exact form will not be important here. In addition to the electric field, Maxwell's equations require that the electromagnetic wave also has a non-zero magnetic field $\mathbf{B}(\mathbf{R}, t) \approx \mathbf{B}_{0}(\mathbf{R}) \cos [\omega t-\phi(\mathbf{R})]$, with $\mathbf{B}_{0}=\hat{\mathbf{k}} \times \mathbf{E}_{0} / c$.

To find the force on the atom, we must include the Lorentz force due the magnetic field:

$$
\begin{align*}
\mathbf{F} & =-e \mathbf{E}_{e}+e \mathbf{E}_{n}-e \frac{d \mathbf{r}_{e}}{d t} \times \mathbf{B}_{e}+e \frac{d \mathbf{r}_{n}}{d t} \times \mathbf{B}_{n} \tag{90}\\
& \approx(-e \mathbf{r} \cdot \nabla) \mathbf{E}-e \frac{d \mathbf{r}}{d t} \times \mathbf{B} \tag{91}
\end{align*}
$$

In the first line, we used the abbreviations $\mathbf{E}_{e}=\mathbf{E}\left(\mathbf{r}_{e}\right)$, etc. In the second line, we have taken the leading term in the Taylor expansions in \mathbf{r}_{e} and \mathbf{r}_{n}, similar to what we did for the static field case in equation (83). As before, we defined $\mathbf{r}=\mathbf{r}_{e}-\mathbf{r}_{n}$. We can now substitute in expressions for $-e \mathbf{r}$ from our treatment of the Lorentz oscillator:

$$
\begin{align*}
-e \mathbf{r}=\mathbf{d} & =\operatorname{Re}\left[\alpha(\omega) \mathbf{E}_{0} e^{-i(\omega t-\phi)}\right] \tag{92}\\
& =\operatorname{Re}[\alpha(\omega)] \mathbf{E}_{0} \cos (\omega t-\phi)+\operatorname{Im}[\alpha(\omega)] \mathbf{E}_{0} \sin (\omega t-\phi) \tag{93}\\
& =\alpha_{r}(\omega) \mathbf{E}+\alpha_{i}(\omega) \mathbf{E}_{0} \sin (\omega t-\phi) \tag{94}
\end{align*}
$$

The first line is just a generalization of equations (26) and (27) to include the phase. In the last time, we introduced the notation $\alpha_{r}(\omega)=\operatorname{Re}[\alpha(\omega)]$ and $\alpha_{i}(\omega)=\operatorname{Im}[\alpha(\omega)]$. For the time derivative, we get:

$$
\begin{align*}
-e \frac{d \mathbf{r}}{d t} & =\alpha_{r}(\omega) \frac{\partial \mathbf{E}}{\partial t}+\omega \alpha_{i}(\omega) \mathbf{E}_{0} \cos (\omega t-\phi) \tag{95}\\
& =\alpha_{r}(\omega) \frac{\partial \mathbf{E}}{\partial t}+\omega \alpha_{i}(\omega) \mathbf{E} \tag{96}
\end{align*}
$$

In the above, we have assumed that the velocity of the atom is initially zero, so that $\frac{d}{d t} \mathbf{E}(\mathbf{R}(t), t)=$ $\partial \mathbf{E} / \partial t$.

When we calculate the force, we will average it over a time that is large compared to the period $2 \pi / \omega$ of the light. We use the following property of time averages of sinusoidal functions:

$$
\begin{equation*}
\langle\cos (\omega t) \sin (\omega t)\rangle_{t}=0 \tag{97}
\end{equation*}
$$

The time-averaged force is then:

$$
\begin{align*}
\langle\mathbf{F}\rangle_{t} & =\left\langle(-e \mathbf{r} \cdot \nabla) \mathbf{E}-e \frac{d \mathbf{r}}{d t} \times \mathbf{B}\right\rangle_{t} \tag{98}\\
& =\left\langle\alpha_{r}(\omega)(\mathbf{E} \cdot \nabla) \mathbf{E}+\alpha_{r}(\omega) \frac{\partial \mathbf{E}}{\partial t} \times \mathbf{B}+\omega \alpha_{i}(\omega) \mathbf{E} \times \mathbf{B}\right\rangle_{t} \tag{99}
\end{align*}
$$

In the above, we used (97) to eliminate the second term coming from (94). We can now use the vector identity (87) along with the Maxwell equation $\nabla \times \mathbf{E}=-\partial \mathbf{B} / \partial t$ to get:

$$
\begin{equation*}
\langle\mathbf{F}\rangle_{t}=\left\langle\alpha_{r}(\omega)\left[\frac{1}{2} \nabla\left(E^{2}\right)+\frac{\partial}{\partial t}(\mathbf{E} \times \mathbf{B})\right]+\omega \alpha_{i}(\omega) \mathbf{E} \times \mathbf{B}\right\rangle_{t} \tag{100}
\end{equation*}
$$

The quantity $\mathbf{E} \times \mathbf{B}$ is proportional to the Poynting vector $\mathbf{S}=(\mathbf{E} \times \mathbf{B}) / \mu_{0}$. The Poynting vector gives the flux of energy carried by the electromagnetic wave. Assuming a steady (CW) laser beam, the time derivative of \mathbf{S} will average to zero, allowing us to drop the middle term in (100). Meanwhile, the time-average of the Poynting vector is related to the light intensity I and the direction of propagation $\hat{\mathbf{k}}$ of the light wave:

$$
\begin{equation*}
\langle\mathbf{S}\rangle=I \hat{\mathbf{k}} \tag{101}
\end{equation*}
$$

The time-average of E^{2} is also proportional to I :

$$
\begin{equation*}
\left\langle E^{2}\right\rangle=\frac{I}{\epsilon_{0} c} \tag{102}
\end{equation*}
$$

The time-averaged force can then be written as a sum of two terms:

$$
\begin{equation*}
\langle\mathbf{F}\rangle_{t}=\mathbf{F}_{\mathrm{dipole}}+\mathbf{F}_{\mathrm{scatt}} \tag{103}
\end{equation*}
$$

where the first term is due to the real part of $\alpha(\omega)$:

$$
\begin{equation*}
\mathbf{F}_{\mathrm{dipole}}=\frac{\alpha_{r}(\omega)}{2 \epsilon_{0} c} \nabla I \tag{104}
\end{equation*}
$$

and the second term is due to the imaginary part of $\alpha(\omega)$:

$$
\begin{equation*}
\mathbf{F}_{\text {scatt }}=\omega \alpha_{i}(\omega) \mu_{0} I \hat{\mathbf{k}} \tag{105}
\end{equation*}
$$

3.3 Dipole Potential

The "dipole" force $\mathbf{F}_{\text {dipole }}$ can be interpreted as resulting from the potential energy of the induced atomic dipole in the electric field of the light. To see this, we note that $\mathbf{F}_{\text {dipole }}$ can be written as the gradient of a potential function:

$$
\begin{equation*}
\mathbf{F}_{\text {dipole }}=\nabla\left\langle\frac{1}{2} \alpha_{r}(\omega) E^{2}\right\rangle_{t} \equiv-\nabla U_{\text {dipole }} \tag{106}
\end{equation*}
$$

So the dipole potential is:

$$
\begin{align*}
U_{\text {dipole }} & =-\frac{1}{2} \alpha_{r}(\omega)\left\langle E^{2}\right\rangle_{t} \tag{107}\\
& =-\frac{\alpha_{r}(\omega)}{2 \epsilon_{0} c} I \tag{108}
\end{align*}
$$

On the other hand, the time average of $\mathbf{d} \cdot \mathbf{E}$ is:

$$
\begin{equation*}
\langle\mathbf{d} \cdot \mathbf{E}\rangle_{t}=\left\langle\alpha_{r}(\omega) \mathbf{E} \cdot \mathbf{E}\right\rangle_{t}=\alpha_{r}(\omega)\left\langle E^{2}\right\rangle_{t} \tag{109}
\end{equation*}
$$

So we can also write the dipole potential as:

$$
\begin{equation*}
U_{\mathrm{dipole}}=-\frac{1}{2}\langle\mathbf{d} \cdot \mathbf{E}\rangle_{t} \tag{110}
\end{equation*}
$$

Equation (110) is the time average of the equation for the potential energy of an induced DC dipole (80), which makes a nice connection between the DC and AC cases. In practice, equation (108) is the most useful form of the dipole potential here, because it involves the light intensity, which is usually measured in experiments.

3.4 Radiation Pressure Force

The "scattering" force $\mathbf{F}_{\text {scatt }}$ results from the momentum transfered to the atom as it scatters light from the laser beam. This force is also referred to as radiation pressure because it is exerted in the direction of the light propagation $\hat{\mathbf{k}}$. The scattering force is not a conservative force in the sense that it cannot generally be written as the gradient of a potential energy. To see this, you can check that the curl of the force is non-zero:

$$
\begin{equation*}
\nabla \times \mathbf{F}_{\text {scatt }}=\left[\omega \alpha_{i}(\omega) \mu_{0} \nabla I\right] \times \hat{\mathbf{k}} \neq 0 \tag{111}
\end{equation*}
$$

To see that this is non-zero, note that the gradient of the intensity of a laser beam points mostly in the transverse direction, while $\hat{\mathbf{k}}$ points in the longitudinal direction, so their cross product is non-zero. Since $\nabla \times \mathbf{F}_{\text {scatt }}$ is non-zero, the vector field $\mathbf{F}_{\text {scatt }}$ cannot be written as the gradient of a scalar function.

Since the scattering force is not conservative, it can dissipate energy from the system. This fact is exploited in laser cooling to cool gases of atoms or other particles to near absolute zero temperature. In laser cooling, energy from the atomic motion is irreversibly transferred to the electromagnetic field through light scattering. On the other hand, light scattering can also lead to heating, depending on the situation.

PLY 446 Lecture 3

- Absorption \& Phase shift of light by atoms

WARM-UP SIMPLIFY THE FOLLOWING, INTERPRET
a)

$$
\begin{aligned}
\vec{E}(z, t) & =\operatorname{Re}\left[E_{0} \tilde{x} e^{i k z} e^{-i \omega t}\right] \\
& =E_{0} \tilde{x} \cos (\omega t-k z)
\end{aligned}
$$

linearly polarized along \tilde{x}
Propagating along Z
b) $\vec{E}(z, t)=\operatorname{Re}\left[E_{0} \hat{X} e^{-\alpha z} e^{i k z} e^{-i \omega t}\right]$

$$
=E_{0} \hat{x} e^{\alpha z} \cos (\omega t-h z)
$$

attenuated exponentially
c)

$$
\begin{aligned}
\vec{E}(z, t) & =\operatorname{Re}\left[E_{0} \frac{1}{\sqrt{2}}\left(\hat{x}^{t}(\hat{y}) e^{i k z} e^{-i \omega t}\right]\right. \\
& =\frac{E_{0}}{\sqrt{2}}(\hat{x} \cos (\omega t-k z)+\hat{y} \sin (\omega t-k z))
\end{aligned}
$$

circular polarization COW ABOUT \hat{z} AT FIXED \vec{r}

generalize - plane wave along z

$$
\begin{aligned}
& \vec{E}(z, t)=\operatorname{Re}\left[\tilde{E}(z) e^{-i \omega t}\right] \\
& \text { c vector } \\
& =\operatorname{Re}\left[E_{0} \hat{\varepsilon} e^{(i k-\alpha) z} e^{-i \omega t}\right] \\
& \text { scalar Polarization }
\end{aligned}
$$

vector

NOTE: $\vec{B}=\frac{1}{c} \hat{h} \times \vec{E}$ for Plane waves

NORMALIZATION: $\hat{\varepsilon}^{*} \cdot \tilde{\varepsilon}=1$
ie. for $\hat{\varepsilon}=\frac{1}{\sqrt{2}}(1, i, 0)=\frac{1}{\sqrt{2}}(\hat{x}+i \hat{y})$

$$
\begin{array}{r}
\hat{\varepsilon}^{*}=\frac{1}{\sqrt{2}}(1,-i, 0) \\
\tilde{\varepsilon} \cdot \tilde{\varepsilon}^{*}=\frac{1}{2}+\frac{1}{2}=1
\end{array}
$$

SUSCEPTIBILITY
ELECTRIC FIELD: $\vec{E}(\vec{r}, t)=\operatorname{Re}\left[\tilde{E}(\vec{r}) e^{-i \omega t}\right]$
Polarization DENsity: $\vec{P}(\vec{r}, t)=\operatorname{Re}\left[\tilde{P}(\vec{r}) e^{-i \omega t}\right]$

- DUE To i.e. ATOMIC DIPOLES

SUSCEPTIBILITY: $x(\omega)$

$$
\tilde{P}=\varepsilon_{0} X(\omega) \tilde{E}
$$

ATOMIC VAPOR:
WE SHOWED: $\chi(w)=\frac{n_{a}}{\varepsilon_{0}} \alpha(\omega)$

$$
\alpha(\omega)=\frac{e^{2} / m}{\omega_{0}^{2}-\omega^{2}-i j \omega}
$$

DC Limit:

$$
\begin{aligned}
& \text { CLIMIT: } \\
& \text { FIND } \lim _{w \rightarrow 0} X_{(w)}=\frac{e^{2}}{m w_{0}^{2}} \frac{n_{a}}{\varepsilon_{0}} \equiv X_{0}
\end{aligned}
$$

- ReAl

FOR $\omega \ll \omega_{0}: \quad \vec{P}(t) \approx \operatorname{Re}\left[\varepsilon_{0} x_{0} \widetilde{E} e^{-i \omega t}\right]$

$$
=\varepsilon_{0} \chi_{0} \vec{E}(t)
$$

- applicable to glass in visible

LIGHT PROPAGATION
plane wave traveling in \hat{z} direction
FROM MAXWELLS EGOS:

$$
\begin{aligned}
\tilde{E}(r) & =E_{0} \hat{\varepsilon} e^{i \tilde{n} k_{0} z} \\
k_{0} & =\text { "VACUUM WAVEUECTOR" }=\omega / C \\
\tilde{n} & =\text { "COMPLEX INDEX OF REFRACTION" } \\
& =\sqrt{1+X(\omega)} \quad \text { (From MAXWELL) } \\
& \approx 1+\frac{1}{2} X(\omega) \text { for } \mid X(\omega) / \ll 1 \\
& =1+\frac{n_{a}}{2 \varepsilon_{0}} \frac{e^{2} / m}{\omega_{0}^{2}-\omega^{2}-i \gamma \omega} \\
& =1+\frac{n_{a} e^{2}}{2 \varepsilon_{0} m} \frac{\left(\omega_{0}^{2}-\omega^{2}\right)+i \gamma \omega}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+(\gamma \omega)^{2}}
\end{aligned}
$$

REAL AND MAG PARTS:

$$
\begin{aligned}
& \tilde{n} \equiv n_{r}+i n_{i} \\
& n_{r} \approx 1+\frac{n a e^{2}}{2 \varepsilon_{0} m} \frac{w_{0}^{2}-w^{2}}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+(\gamma w)^{2}} \\
& n_{i} \approx \frac{n_{a} e^{2}}{2 \varepsilon_{0} M} \frac{\gamma \omega}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+(\gamma \omega)^{2}}
\end{aligned}
$$

AbSORPTION \& PHASE SHIFT

$$
\tilde{E}(\tilde{r})=E_{0} \hat{\varepsilon} e^{i \tilde{n} k_{0} z}=E_{0} \hat{\varepsilon} e^{-n_{i} k_{0} z} e^{i n_{r} k_{0} z}
$$

REAL PART: PHASE

$$
\phi(z)=n_{r} k_{0} z \equiv h z
$$

COMPARE:

$$
\begin{aligned}
\Delta \phi & =n_{r} k_{0} L-k_{0} L \\
& =\left(n_{r}-1\right) k_{0} L
\end{aligned}
$$

- can measure via interferometer or Refraction (Bending) of LIGHT at non-normal incidence

MAG. PART $\tilde{E} \propto e^{-n_{1} \cos _{0} z}$
LIGHT INTENSITY:

$$
\begin{aligned}
I= & \frac{e_{n e r g y}}{\text { areas time }}=\frac{c}{n_{r}} \bar{u} \\
= & \frac{c}{c_{r}} \frac{n_{r}^{2}}{2}\left(\varepsilon_{0} \overline{E^{2}}+\frac{1}{\mu_{0}} \overline{B^{2}}\right) \\
= & \varepsilon_{0} C \overline{E^{2}} n_{r} \text { for purity (time avg plane waves } \\
& =\frac{n_{r}}{2} \varepsilon_{0} C \widetilde{E} \cdot \widetilde{E}^{*}=\underbrace{\frac{n_{r}}{2} \varepsilon_{0} C E_{0}^{2}}_{I_{0}} e^{-2 n_{i} n_{0} z}
\end{aligned}
$$

$$
\begin{aligned}
I(z) & =I_{0} e^{-2 n_{i} k_{0} z} \\
& \equiv I_{0} e^{-a z} \\
a(\omega) & =2 n_{i} k_{0} \\
& =\frac{2 \omega}{c} I_{m}(\tilde{n}) \approx \frac{2 \omega}{c} \frac{n_{a} e^{2}}{2 \varepsilon_{0} m_{e}} \frac{\gamma \omega}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+(\gamma \omega)^{2}}
\end{aligned}
$$

Exereise: Relate to $I_{M} \alpha(\omega)$

Light intensity -Note
derivation of intensity using pointing vector

$$
\begin{aligned}
\vec{S} & =\frac{1}{\mu_{0}} \vec{E} \times \vec{B} \\
\vec{E} & =\operatorname{Re}\left[E_{0} \hat{\varepsilon} e^{i \tilde{k} z} e^{-i \omega t}\right] \\
\nabla \times \vec{E} & =-\frac{\partial \vec{B}}{\partial t} \\
\nabla \vec{E} & =\left(\partial / y E_{z}-\partial_{z} E_{y}, \partial_{z} E_{x}-\partial x t_{z}, \partial_{x} E_{y}-\partial_{y} E_{x}\right) \\
& =\left(-\partial_{z} E_{y}, \partial_{z} E_{x}, 0\right) \\
\partial z \vec{E} & =\operatorname{Re}\left[E_{0} \hat{\varepsilon} i \tilde{h} e^{i \tilde{i} z} e^{-i \omega t}\right] \\
\vec{B} & =\operatorname{Re}\left[B_{0} \hat{b} e^{i \tilde{h} z} e^{-i \omega t}\right] \\
-\frac{\partial \vec{B}}{\partial t} & =\operatorname{Re}\left[B_{0} \hat{b} i \omega e^{i \tilde{h} z-i \omega t}\right]
\end{aligned}
$$

\hat{x} component:

$$
\begin{aligned}
(\nabla \times E)_{x} & =-\partial_{z} E_{y}=-\operatorname{Re}\left[E_{0} \varepsilon_{y} i \tilde{h} e^{i(\tilde{h} z-\omega t)}\right] \\
-\partial B_{x} / \partial t & =\operatorname{Re}\left[B_{0} \hat{b}_{x} i \omega e^{i \tilde{h}^{2} z-i \omega t}\right] \\
B_{0} b_{x} \omega & =-E_{0} \varepsilon_{y} \tilde{h} \\
\dot{g}:(\nabla \times E)_{y} & =\partial z E_{x}=\operatorname{Re}\left[E_{0} \varepsilon_{x} \tilde{i} e^{i(\tilde{h} z-\omega t)}\right] \\
-\partial B_{y} / \partial t & =\operatorname{Re}\left[B_{0} b_{y} i \omega e^{i(\tilde{\varepsilon z-\omega t)}]}\right. \\
B_{0} b_{y} \omega & =E_{0} \varepsilon_{x} \tilde{h}
\end{aligned}
$$

$$
\begin{aligned}
& b_{x}=-\varepsilon_{y} \frac{\tilde{\hbar}}{|\tilde{\kappa}|} ; b_{y}=\varepsilon_{x} \frac{\tilde{\kappa}}{|\tilde{\kappa}|} \\
& b_{x}^{x} b_{x}+b_{y}^{x} b_{y}=\varepsilon_{y} \varepsilon_{y}+\varepsilon_{x}^{\sigma} \varepsilon_{x}=1 \\
& B_{0}^{2} b_{x}^{*} b_{x} \omega^{2}+B_{0}^{2} \omega^{2} b_{y}^{x} b_{y}=E_{0}^{2} \varepsilon_{y}^{*} \varepsilon_{y}|\tilde{k}|^{2}+E_{0}^{2} \varepsilon_{0}^{*} \varepsilon_{x}\left(\left.\tilde{k}\right|^{2}\right. \\
& B_{0}^{2} \omega^{2}=E_{0}^{2} / \hbar^{2} \\
& B_{0}=\frac{|\tilde{k}|}{\omega} E_{0} \\
& \vec{B}=\operatorname{Re}\left[B_{0} \hat{b} e^{\left.i \tilde{h z} e^{-i \omega t}\right]}\right. \\
& =\frac{1}{2}\left[B_{0} \hat{b} e^{i(\tilde{k z}-\omega t)}+B_{0} \hat{b}^{t} e^{-i(\tilde{b} z-\omega t)}\right] \\
& \vec{E}=\operatorname{Re}\left[E_{0} \hat{\varepsilon} e^{i \tilde{k} z} e^{-i \omega t}\right] \\
& =\frac{1}{2}\left[E_{0} \hat{\varepsilon} e^{i(\hat{k} z-\omega t)}+E_{0} \hat{\varepsilon}^{x} e^{-i(\tilde{k} z-\omega t)}\right] \\
& \tilde{\varepsilon} \times \hat{b}^{*}=\left(0,0, \varepsilon_{x} b_{y}^{*}-\varepsilon_{y} b_{x}^{*}\right) \\
& =\varepsilon_{x}^{*} \varepsilon_{x} \frac{\widetilde{h}^{*}}{|\tilde{k}|}+\xi_{\xi}^{x} \varepsilon_{y} \frac{\widetilde{h}^{*}}{|\tilde{k}|}=\frac{\widetilde{k}^{\infty}}{|\tilde{k}|} \\
& \hat{\varepsilon}^{\times} \times \hat{b}=\pi /|\tilde{h}| \\
& \langle\vec{E} \times \vec{B}\rangle_{t}=\frac{1}{4} E_{0} B_{0}\left(\frac{\tilde{h}^{*}}{|\tilde{k}|}+\frac{\tilde{k}}{|\tilde{k}|}\right)=\frac{1}{2} E_{0} B_{0} \frac{\operatorname{Re}(\tilde{k})}{|\tilde{k}|} \\
& =\frac{1}{2} E_{0}\left(\frac{|\tilde{\omega}|}{\omega \sigma} E_{0}\right)\left(n_{r} \frac{\omega}{c}\right) \frac{1}{|\tilde{H}|} \\
& =\frac{1}{2}\left(\frac{n_{r}}{c}\right) E_{0}^{2}=\frac{1}{2} \sqrt{\varepsilon_{0} \mu_{0}} n_{r} E_{0}^{2} \\
& \langle\vec{S}\rangle_{t}=\frac{1}{\mu_{0}}\langle\vec{E} \times \vec{B}\rangle_{t}=\frac{1}{2} \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} n_{r} E_{0}^{2} \hat{z} \\
& =\frac{1}{2} \frac{\varepsilon_{0}}{\sqrt{\varepsilon_{0} \mu_{0}}} n_{r} E_{\sigma}^{2} \hat{z}=\frac{1}{2} \varepsilon_{0} C n_{r} E_{\sigma}^{2} \hat{z}
\end{aligned}
$$

Shy 446 Lecture 4

- Optical forces on atoms

WARM -OP 1
sketch the following and find avg value:
a) $\sin (\omega t)$

b) $\sin (\omega t) \cos (\omega t)=\frac{1}{2} \sin (2 \omega t)$

c) $\cos ^{2}(\omega t)=\frac{1}{2}(1+\cos (2 \omega t))$

Time average Formally,

$$
\langle f(t)\rangle_{t}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} f(t) d t
$$

E. G.

$$
\begin{aligned}
\langle\cos (\omega t)\rangle_{t} & =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \cos (\omega t) d t \\
& =\lim _{T \rightarrow \infty} \frac{\sin (\omega T)}{\omega T}=0
\end{aligned}
$$

WEAL USE THIS IN A FEW MINUTES...

TODAY: OPTICAL FORCES ON ATOMS

1) dipole force

- potential energy of atom due to light

PREVIEW:

$$
\text { RED-DETUNED: } \omega<\omega_{0} \text { ATTRACTIVE }
$$

$$
\text { BLUE-DETUNED: } \omega>\omega_{0} \text { REPULSIVE }
$$

2) SCATTERING FORCE - MOMENTUM OF ABSORBED

1) DIPOLE FORCE
a) induced Dipole in Static (dc) E field $\hat{i-e}$ ATOM
$n^{+} \sim \sim \leftarrow \vec{E}$

- here's a cute argument that glues INTUITION AND THE RIGHT ANSWER
- rigorous derivation in lorentz oscillator NOTES (PDF) SECTION 3.1.2
$\vec{E}=E \hat{x} \quad(\Delta C)$
$\vec{d}=d_{x} \hat{x} ; \quad d_{x}=-e x=\alpha E_{x}=\alpha E$
INCREASE E by dE. WORK-ENERGY THEOREM:

$$
\begin{aligned}
d U & =-F d x=-(-e E) d x=-E d(-e x) \\
& =-E d(\alpha E)=-\alpha E d E \\
U & =-\alpha \int_{0}^{E} E^{\prime} d E^{\prime}=-\frac{1}{2} \alpha E^{2}=\frac{-1}{2} \underbrace{\alpha E E}_{d_{x}} \\
& =-\frac{1}{2} d_{x} E_{x}
\end{aligned}
$$

ARB. DIRECTION: $U=-\frac{1}{2} \vec{d} \cdot \vec{E}$ (INDUCED, $D C$)

$$
=-\frac{1}{2} \alpha \vec{E}^{2}
$$

FORCE: $\vec{F}=-\nabla U=\frac{1}{2} \alpha \nabla\left(\vec{E}^{2}\right)$

- GRAD IN $|\vec{E}| \Rightarrow$ FORCE

6) Static (permanent) Dipole in static \vec{E} field:

$$
U=-\vec{d} \cdot \vec{E}
$$

DERATION: $\vec{E}=-\nabla \phi \Rightarrow \phi=-\int_{0}^{\vec{r}} \vec{E} \cdot d \vec{r}^{\prime}=-\vec{E} \cdot \vec{r}$

$$
\begin{aligned}
& U=-\alpha \int_{01}^{E} E^{\prime} d E_{2}^{\prime}=-\frac{1}{2} \alpha E^{2}{ }^{2} e_{\text {cost }} \\
& U=\sum_{i} q_{i} \phi\left(\vec{r}_{i}\right)=-e\left(-\vec{E} \cdot \vec{r}_{2}\right)+e\left(-\vec{E} \cdot \vec{r}_{1}\right) \\
& =-(\underbrace{e \vec{r}_{2}+e \vec{r}_{1}}_{\vec{d}}) \cdot \vec{E}=-\vec{d} \cdot \vec{E}
\end{aligned}
$$

- could write same formulas as above, but dobsn't give the actual energy stored in the system
- Have to account for the fact that the dipole is induced
b) INDUCED DIPOLE, AC \vec{E} field
time-avg potential:

$$
U=\left\langle-\frac{1}{2} \vec{d} \cdot \vec{E}\right\rangle_{t}
$$

- Derivation: Lorentz Notes 3.2

CONSIDER $\vec{E}=E_{0} \hat{x} \cos (\omega t)$

$$
\begin{aligned}
\vec{E} & =E_{0} \hat{x} \cos (\omega t) \\
x(t) & =U \cos (\omega t)-U \sin (\omega t)=\operatorname{Re}\left[\left(\tilde{U}_{-i} U\right) e^{-i \omega t}\right] \\
d_{x}(t) & =-e x(t)
\end{aligned}
$$

Find U:

$$
\begin{aligned}
U & =\left\langle-\frac{1}{2} d_{x} E_{x}\right\rangle_{t}=\left\langle-\frac{1}{2}(-e x) E_{0} \cos (\omega t)\right\rangle_{t} \\
& =\frac{1}{2} e E_{0}\left\langle U \cos ^{2}(\omega t)-U \sin (\omega t) \cos (\omega t)\right\rangle_{t} \\
& =\frac{1}{4} e E_{0} U
\end{aligned}
$$

RELATE U to $\alpha(\omega):-e \tilde{x}=-e(U-i U)=\tilde{d}_{x}=\alpha(\omega) E_{0}$

$$
\begin{aligned}
& e U=-\operatorname{Re}\left[\tilde{d}_{x}\right]=-\operatorname{Re}[\alpha(w)] E_{0} \\
& e V=I_{m}\left[\tilde{d}_{x}\right]=E_{0} \operatorname{Im}[\alpha(w)] \quad\left\{\begin{array}{l}
\text { SANE EATER }
\end{array}\right. \\
& U=\frac{1}{4} E_{0}(e l l)=\frac{1}{4} E_{0}\left(-\operatorname{Re}[\alpha(w)] E_{0}\right) \\
& =-\frac{1}{4} \operatorname{Re}[\alpha(w)] E_{0}^{2} \quad \alpha I \\
& \text { INTENSITY (VACNUN):I=} \frac{1}{2} \varepsilon_{0} C E_{0}^{2} \\
& U=-\frac{I}{2 \varepsilon_{0} C} \operatorname{Re}[\alpha(w)]
\end{aligned}
$$

NEAR-RESONANCB APPROX: $\alpha(\omega) \approx \frac{-e^{2}}{2 m \omega_{0}} \frac{\Delta-i \gamma / 2}{\Delta^{2}+(\gamma / 2)^{2}}$

$$
\begin{aligned}
& \Delta=\omega-\omega_{0} \\
& \operatorname{Re}[\alpha(\Delta)]=-\frac{e^{2}}{2 m \omega_{0}} \frac{\Delta}{\Delta^{2}+(\gamma / 2)^{2}} \\
& U=-\frac{I}{2 \varepsilon_{0} c} \operatorname{Re}[\alpha(\omega)] \approx \frac{I}{2 \varepsilon_{0} c} \frac{e^{2}}{2 m \omega_{0}} \frac{\Delta}{\Delta^{2}+(\gamma / 2)^{2}}
\end{aligned}
$$

RED-DETUNED

Blue-detuned
Attractive repulsiue
2) Scattering Force

Momentum of LIGHT

$$
\text { - CLASSICAL: MOMENTUM }=\frac{\text { ENERGY DENSITY }}{C}
$$

- Quantum + RELATIUTY: $E=\sqrt{(\rho c)^{2}+\left(m c^{2}\right)^{2}}$
photon: $m=0, E_{\text {photon }}=p C$ $\rightarrow p=E / c$

$$
\begin{aligned}
\Rightarrow \text { FORCE }=\frac{\text { MOMENTUM }}{\Pi \mu E} & =\frac{\text { ENERGY ABSORBED /C }}{\text { TIME }} \\
& =\frac{\text { POWER ABSORBED }}{C}
\end{aligned}
$$

Power = FORCE \times VELOCITY

$$
\begin{aligned}
P_{a b s} & =\left\langle F_{e} \dot{x}_{e}+F_{n} / \dot{x}_{n}\right\rangle_{t} \approx 0 \text { AssumE } \dot{x}_{n}=O \text { for } \operatorname{simplicirr} \\
F_{e} & =-e E_{x}=-e E_{0} \cos (\omega t) \\
\dot{x}_{e} & ={ }^{d} x_{e}=\frac{d}{\sqrt{t}}(U \cos (\omega t)-U \sin (\omega t)) \\
& =-\omega U \sin (\omega t)-\omega U \cos (\omega t)
\end{aligned}
$$

$$
\begin{aligned}
P_{a b s} & =e E_{0} \omega\left\langle U \cos (\omega t) \sin (\omega t)+U \cos ^{2}(\omega t)\right\rangle_{t}^{1 / 2} \\
& =\frac{1}{2} e E_{0} \omega V \\
F_{\text {scatt }} & =\frac{P_{a b s}}{c}=\frac{e \omega}{2 e} E_{0} V
\end{aligned}
$$

Relate V To $\alpha(w)$:

$$
\begin{aligned}
& -e \tilde{x}=-e(U-i V)=\tilde{d}_{x}=\alpha(w) E_{0} \\
& e V=\operatorname{Im}\left[\tilde{J}_{x}\right]=E_{0} \operatorname{Im}[\alpha(w)]
\end{aligned}
$$

PAY 446 SPRING 2020
lecture 5

- review of hydrogen atom \& Paul principle
- identical particles

WARM-UP /REVIEW
WRITE GROUND-StATE ELECTRON CONFIGURATION OF:

Z	symbol	config.
1	H	$1 s$
2	$H e$	$1 s^{2}$
3	Li^{2}	$1 s^{2} 2 s$
10	Ne	$1 s^{2} 2 s^{2} 2 p^{6}$
11	Na	$1 s^{2} 2 s^{2} 2 p^{6} 3 s$

Rules: $\begin{array}{lll}s & l & 0 \\ p & 1 & \quad l<n \\ d & 2 & \\ f & 3 & \end{array}$
EACH ELECTRON HAS $n, l_{,}, m_{c}, m_{s}$
Pauli principle: No two electrons can have
THE SAME QUANTUM NUMBERS
FOR $Z \leq 56$ (Ba) (GROUND STATE)

$$
E_{n s}<E_{\text {If exist }} E_{(n-1) d}<E_{n p}<E_{(n+1) s}
$$

- AFter that, need f orbitals, too

HYDROGEN $\quad(Z=1)$
Nuc. electon

ELECTRON WAUEFUNCTIONS

$$
\begin{aligned}
\Psi(\vec{r}) & =\Psi_{\text {nem }}(r, 0, \phi) \\
& =R_{n \ell}(r) Y_{\text {em }}(0, \phi)
\end{aligned}
$$

GRIFFITHS: Y_{μ}^{m}, FOOT: $Y_{l m}$
Yem are angular momentum eigenfunctigns

$$
\begin{aligned}
& \hat{L}^{2} Y_{l m}=\hbar^{2} l(l+1) Y_{l m} \\
& \hat{L}_{z} Y_{l m}=\hbar m Y_{l m} \quad\left(\hat{L}_{z}=-i \hbar \frac{\partial}{\partial \phi}\right)
\end{aligned}
$$

Rne Satisfies the radial eqn
LET $u=r \cdot R(r)$

$$
-\frac{\hbar^{2}}{2 m_{e}} \frac{d^{2} u}{d r^{2}}+\underbrace{\left(\frac{\hbar^{2}}{2 m_{e}} \frac{l(l+1)}{r^{2}}-\frac{e^{2}}{4 \pi \varepsilon_{0} r}\right.}_{V_{e f f}}) u=E u
$$

Solutions:

$$
\begin{aligned}
& E_{n i \text { UTONS: }}=E_{n}=\frac{-m_{e}\left(\frac{e^{2}}{4 \pi \pi}\right)^{2}}{2 \hbar^{2}} \frac{1}{n^{2}}=\frac{-13.6 \mathrm{eV}}{n^{2}} \\
& n>\mu
\end{aligned}
$$

$$
\begin{aligned}
& n=1, l=0 \quad(1 \mathrm{~s}) \quad \text { END STATE } \\
& R_{10}(r) \propto e^{-r / a_{0}} \\
& a_{0}
\end{aligned}=\text { BOHR RADIUS }=\frac{4 \pi \varepsilon_{0} \hbar^{2}}{m_{e} e^{2}}=0.529 \times 10^{-10} \mathrm{~m} .
$$

ASIDE - WHY LOOK AT Une? ANOTHER REASON: RADIAL Prob Density

$$
\begin{aligned}
P(r) d r & \left.=\int_{0}^{\pi} d \theta \int_{0}^{\pi} d \phi \mid R_{n c}(r) Y_{l m}^{2 \pi}(0, \phi)\right)^{2} r^{2} \sin \theta d o d p \\
& =r^{2} R_{n \lambda}^{2}(r) d r=\left(r R_{n l}(r)\right)^{2}=u_{n l}^{2}(r) d r \\
\rightarrow P(r) & =\left|u_{n l}(r)\right|^{2}
\end{aligned}
$$

first Excited States $n=2$

$$
l=0: \quad R_{20}(r) \propto\left(2-r / a_{0}\right) e^{-r /\left(2 a_{0}\right)}
$$

$$
\xrightarrow[2 a_{0}]{a_{20}=r R_{20}} r \text { R }
$$

$l=1:$

- "Accidental degeneracy in l - Fur arb V(r), Ene depends on l

RADIAL NODES: ZEROS OF $u(r)$ for $r>0$ - $r=0$ DOESN'T COUNT

A Radial nodes $v=n-l-1$

$$
\rightarrow n=v+l+1
$$

n	e	v	
1	0	0	J
2	0	1	\checkmark
2	1	0	\checkmark

E.G. SKETCH $U(r)=r R(r)$ FOR $4 p \quad$ UN

$$
\begin{aligned}
& n=4, \quad l=1 \\
& v=n-l-1=4-1-1=2
\end{aligned}
$$

MULTIELECTRON ATOMS

- How to: wavefunctions for multiple electrons
- Origin of pauli principle

CONSIDER TwO IDENTICAL PARTICLES (142)
ie. Two Electrons
WITH SAME SPIN PROJECTION: $m_{S_{1}}=m_{S 2}$
ie. $\uparrow \uparrow$

$$
\hat{\phi}_{1} \quad \hat{\phi}_{2}
$$

TWO-PARTICLE WAURFUNCTION $\psi\left(\vec{r}_{1}, \vec{r}_{2}\right)$

MEANING: JOINT PROB DENSITY is

$$
P\left(\vec{r}_{1}, \vec{r}_{2}\right)=\left|\psi\left(\vec{r}_{2}, \vec{r}_{2}\right)\right|^{2}
$$

PROR of \vec{r}_{1} within $d^{3} r_{1}$ of \vec{r}_{1}^{\prime}
$4 \quad \vec{r}_{2}$ WITHIN $d^{3} r_{2}$ OF \vec{r}_{2}^{\prime}

$$
=\mid \psi\left(r_{1},\left.\vec{r}_{2}\right|^{2} d r_{1}^{3} d^{3} r_{2}\right.
$$

Exchange Symmetry

- Particles are indistinguishable, so labels "I" and "2" have no real meaning

$$
\begin{aligned}
& \rightarrow P\left(r_{1}, r_{2}\right)=P\left(r_{2}, r_{1}\right) \\
& \rightarrow\left|\psi\left(r_{1}, r_{2}\right)\right|=\left|\psi\left(r_{2}, r_{1}\right)\right| \\
& \rightarrow \psi\left(r_{1}, r_{2}\right)=e^{i 0} \psi\left(r_{2}, r_{1}\right)
\end{aligned}
$$

Quantum Statistics
BOSONS: $\quad e^{i \theta}=1$

$$
\psi\left(r_{1}, r_{2}\right)=\psi\left(r_{2}, r_{1}\right) \quad(\text { EQUAL SPIN })
$$

- ERG- PIONS, PHOTONS, WAZBOSONS

FERMIONS: $e^{i 0}=-1$

$$
\psi\left(r_{2}, r_{1}\right)=-\psi\left(r_{1}, r_{2}\right) \quad \text { (EQUAL SPAN) }
$$

- E.G- ELECTRONS, Proton, neutrons

SPIN -STATISTICS CONNECTION
INTEGER SPIN (EG $0,1,3 \ldots) \rightarrow$ BOSON HALF-INTEGBR SPIN (EG. $1 / 2,3 / 3, \ldots) \rightarrow$ FERMION

ELECTRON: SPIN $\frac{1}{2} \rightarrow$ FERMION
COMPOSITE PARTICLES: EVEN \# OF FERMI \rightarrow BOSE ODD OF FERN) \rightarrow FERMI

EGG ${ }^{' H}$ ATOM \rightarrow BOSON
${ }^{4}$ He ATom: Rupee \rightarrow BOSON
${ }^{6}$ Li ATOM $=n^{3} p^{3} e^{3} \rightarrow$ FERMION

$$
\begin{aligned}
& E N D \text { of } \\
& L E C T U R E
\end{aligned}
$$

PRoDuct wave, functions

- For two indistinguishable particles

$$
\psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=\psi_{a}\left(\vec{r}_{1}\right) \psi_{b}\left(\vec{r}_{2}\right)
$$

OR $\psi_{b}\left(r_{1}\right) \psi_{a}\left(\vec{r}_{2}\right) \leftarrow$ SAME ENERGY
any linear comb. has same energy
SYMMETRIZE: $\quad \psi\left(\vec{r}_{1}, \vec{r}_{2}\right)= \pm \psi\left(\vec{r}_{1}, \vec{r}_{2}\right)$

$$
\rightarrow \psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=\frac{1}{\sqrt{2}}\left[\psi_{a}\left(\vec{r}_{1}\right) \psi_{b}\left(\overrightarrow{r_{2}}\right) \pm \psi_{b}\left(\overrightarrow{r_{1}}\right) \psi_{a}\left(\vec{r}_{2}\right)\right]
$$

FOR ELECTRONS (FERMIONS) WITH SAME SPIN, (iA)

$$
\psi\left(r_{1}, r_{2}\right)=\frac{1}{\sqrt{2}}\left[\psi_{a}\left(r_{1}\right) \psi_{b}\left(r_{2}\right)-\psi_{b}\left(r_{1}\right) \psi_{a}\left(r_{2}\right)\right]
$$

PAuli Principle: CAn'T have $\psi_{a}=\varphi_{b}$, BIC THEN

$$
\begin{aligned}
\psi\left(r_{1}, r_{2}\right) & =\frac{1}{\sqrt{2}}\left(\psi_{a}\left(r_{1}\right) \psi_{a}\left(r_{2}\right)-\psi_{a}\left(r_{1}\right) \psi_{a}\left(r_{2}\right)\right) \\
& =0
\end{aligned}
$$

WAVE FUNCTION SYMMETRY
\rightarrow TwO ELECTRONS CAN'T BE IN SAME QUANKM STATE ie $\left|\psi_{a}, \uparrow\right\rangle$

Separation of variables
For non-interacting particles, potential energy

$$
U\left(\vec{r}_{1}, \vec{r}_{2}\right)=V\left(\vec{r}_{1}\right)+V\left(\vec{r}_{2}\right)
$$

\rightarrow TIE SOLVED BY SEP. OF VARS
HElium Ground State
CONFIGURATION: $1 \mathrm{~s}^{2}$
Pauli: The electrons have opposite spin

PLY 446 SPRING 2020
Lecture 6
Survey of Atomic Structure: Part 2

- origin of pauli principle
- LS coupling
- Fine \& hyperfine Structure

Multi-electron wauefunctions
For two ELECTRons w/ SAME SPIN (ie $\uparrow \uparrow$)

- Indistinguishable fermions

$$
\psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=-\psi\left(\vec{r}_{2}, \vec{r}_{1}\right)
$$

Product wavefunctions ("independent electron approx:")

- USE PRODUCT OF SINGLE-PARTILLE WAUE functions

$$
\psi_{a}\left(r_{1}\right) \psi_{b}\left(r_{2}\right) \quad O R \quad \psi_{b}\left(r_{1}\right) \psi_{a}\left(r_{2}\right)
$$

i.e. $\psi_{a}=\psi_{n \ell m} ; \psi_{b}=\psi_{n^{\prime} \prime^{\prime} m^{\prime}}$

- MUST BE ANTI-SYMMETRIC:

$$
\psi\left(r_{1}, r_{2}\right)=\frac{1}{\sqrt{2}}\left[\psi_{a}\left(r_{1}\right) \psi_{b}\left(r_{2}\right)-\psi_{b}\left(r_{1}\right) \psi_{a}\left(r_{2}\right)\right]
$$

- CHECK!

PAul PRincIple: cAn'T Have $\Psi_{a}=\varphi_{b}$,

$$
\begin{aligned}
& B / C \text { THEN } \\
& \psi\left(r_{1}, r_{2}\right)=\frac{1}{\sqrt{2}}\left(\psi_{a}\left(r_{1}\right) \psi_{a}\left(r_{2}\right)-\psi_{a}\left(r_{1}\right) \psi_{a}\left(r_{2}\right)\right) \\
&=0
\end{aligned}
$$

\rightarrow Two ELECTRONS CAN'T BE IN SAME QUANTM STATE ie ($n \ell m, \uparrow$)
E.x. He ground state $1 s^{2}$

If spin it then eels indistinguishable
\rightarrow CAN'T BOTH HAVE $n=i, l=0, m_{\mu}=0$
SO MUST HAVE OPPOSITE SPIN
\Rightarrow TOTAL SPIN MUST BE $S=0$
ALSO, TOTAL ORBITAL $L=O$
LS COUPLING
CONSIDER ATOM WITH N ELECTRONS
Total orbital angular momentum of electrons:

$$
\vec{L} \equiv \vec{l}_{1}+\vec{l}_{2}+\cdots+\vec{l}_{N}=\sum_{i=1}^{N} \vec{l}_{i}
$$

TOTAL SPIN:

$$
\vec{S}=\vec{S}_{1}+\vec{S}_{2}+\cdots+\vec{S}_{N}=\sum_{c=1}^{N} \vec{S}_{c}
$$

MOST ENERGY LEVELS IN MOST ATOMS
ARE APPROX. EIG. STATES OF:

$$
\vec{L}^{2} \text { AND } \vec{S}^{2}
$$

WHY? BECAUSE: $\left[\hat{H}, \hat{L}_{\alpha}\right] \approx 0$
HAMILTONIAN $L_{\alpha}=x, y, z$ components
of ELECTRONS
in ATOM
AND: $\left[\hat{H}, \hat{S}_{\alpha}\right] \approx 0$

- operators that commute are "COMPATIBLE": CAN KNOW SIMULTANEOUSLY
- RECALL: $\left[\hat{L}^{2}, \hat{L}_{z}\right]=0$
$\left[\hat{S}^{2}, \hat{S}_{z}\right]=0$
$\left[\hat{S}_{\alpha}, \hat{L}_{\beta}\right]=0 \quad$ for $\quad \alpha, \beta=x, y, z$
BUT: $\begin{array}{rlll}{\left[\hat{L}_{x}, \hat{L}_{y}\right]} & =i \hbar \hat{L}_{z} & \text { etc. } & \hat{z}_{z}^{x} \\ {\left[\hat{S}_{x}, \hat{S}_{y}\right]} & =i \hbar \hat{S}_{z} & \text { etc } & z\end{array}$
SO CAN ONLY KNOW ONE COMPONENT of $\vec{L}\left(\right.$ i.e. $\left.L_{z}\right)$ AND ONE OF $\vec{S}\left(\right.$ i.e. $\left.\left.S_{z}\right)\right]$
EIGENVALUES OF \hat{L}^{2} ARE $\hbar^{2} L(L+1)$
OF \hat{S}^{2} ARE $\hbar^{2} S(S+1)$
- possible values of las depend on

THE CONFIGURATIGN, i.e. $1 s^{2} 2 s^{2} 2 \rho \ldots$

- possible to predict, but won' cover that today

RUSSELL- SAUNDERS (SPECTROSCOPIC) NOTATION:
LABEL ATOMIC STATES USING

$$
\begin{gathered}
2 s+1 \\
L_{\text {USE LETTER HERE }} \text { "TERM SYMBOL" }
\end{gathered}
$$

E. X

1) H ground state: $i s \rightarrow S=\frac{1}{2}, L=O$

$$
\begin{aligned}
2 s+1= & 2 ; L \rightarrow " S " \\
& 2 S
\end{aligned}
$$

2) Li Ground STATE: $1 S^{2} 2 S \rightarrow S=\frac{1}{2}, L=0$

$$
{ }^{2} S
$$

3) $C(z=6) G N D S_{T A T E:} / s^{2} 2 s^{2} 2 p^{2}: S=1, L=1$ ${ }^{3} P$ EVEN Z of $e^{-} \Rightarrow \delta_{\text {INT. }}$
4) $C=1 s^{2} 2 s^{2} L_{p}^{2}: S=0, L=2{ }^{1} D$ (981 nm)

Fine structure
special Relativity effect
IN ELECTRON FRAME, \vec{E} FIELD of NUCLEUS
induces $A \vec{B}$ field:

$$
\begin{aligned}
\vec{B} & =-\frac{1}{c^{2}} \vec{v} \times \vec{E} \quad \text { (RELATLUSTIC TRANS FORMATION) } \\
& =-\frac{1}{c^{2}} \vec{V} \times\left(\frac{e}{4 \pi \varepsilon_{0} r^{2}} \frac{\vec{r}}{r}\right) \\
& \propto \vec{r} \times(m \vec{v})=\vec{r} \times \vec{p}=\vec{l}
\end{aligned}
$$

ELECTRON SPIN INTERACTS WITH \vec{B}

$$
\begin{aligned}
& H_{s 0}=-\overrightarrow{\mu_{s}} \cdot \vec{\beta} \propto \vec{s} \cdot \vec{l} \\
& H_{s 0} \equiv \beta \vec{s} \cdot \vec{l}
\end{aligned}
$$

For multiple electrons,

$$
H_{S O} \approx \beta \vec{S} \cdot \vec{L}
$$

c total spin
FIND EIGEN STATES OF $H_{\text {so }}$:
Define total electron angular momentum

$$
\vec{J}=\vec{L}+\vec{S}
$$

Trick: $\vec{J}^{2}=\vec{J} \cdot \vec{J}=(\vec{L}+\vec{S}) \cdot(\vec{L}+\vec{S})=\vec{L}^{2}+2 \vec{S} \cdot \vec{L}+\vec{S}^{2}$

$$
\vec{S} \cdot \vec{L}=\frac{1}{2}\left[\vec{J}^{2}-\vec{L}^{2}-\vec{S}^{2}\right]
$$

EIGENVALUES:

$$
\begin{gathered}
\hat{J}^{2}: \hbar^{2} J(J+1) \\
\vec{S} \cdot \vec{L}: \frac{1}{2} \hbar^{2}[J(J+1)-L(L+1)-S(S+1)] \\
E_{S 0}=\frac{\beta}{2} \hbar^{2}[J(J+1)-L(L+1)-S(S+1)]
\end{gathered}
$$

Angular momentum addition rule:

$$
J=|L-S|, \quad|L-S|+1, \ldots, \quad L+S
$$

vive. $\vec{\sigma}{\underset{\sim}{L}}^{\prod_{\vec{s}}} \quad \operatorname{mAx}: \quad \uparrow_{s} \uparrow \mathrm{~J}$

$$
\operatorname{MIN}: L \uparrow_{\downarrow S} \uparrow J
$$

Ex. Na ExCITED STATES $(z=11)$
END $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s$
EXC. $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 p$
$L=0, S=0$ VALENCE ELECTRON HAS ALL
For FILLED
the angular mombutum
shells
a) TOTAL L $4 S$ In EXC. STATE

$$
L=1, \quad S=\frac{1}{2}
$$

b) TERM SYMBOL: ${ }^{2} p$
c) POSSIBLE J VALUES: $J=1-\frac{1}{2}, 1+\frac{1}{2}=\frac{1}{2}, \frac{3}{2}$

$$
{ }^{2 s+1} L_{J}={ }^{2} P_{\frac{1}{2}}, \quad{ }^{2} P_{3 / 2} \text { " GULL" }
$$

Na GND State $J=10-\frac{1}{2} \left\lvert\,, 0+\frac{1}{2}=\frac{1}{2}\right.$
TERM LEVEL SYMBOL: ${ }^{2} \mathrm{~S}_{1 / 2}$
Na energy levels (Fine Structure) - first few "Gross" Structure fine structure
Exc. $3 p-{ }^{2 p} \quad{ }^{2 p}=5=3 / 2 \quad \begin{array}{ll} & 2 p_{3 / 2} \\ 5=1 / 2 & 2 p_{1 / 2}\end{array}$
GND $35-{ }^{2} S \quad 3 s \quad-J=\frac{1}{2} \quad 2 S_{1 / 2}$
ENERGY SCALES - MIST DATABASE

$$
C m^{-1}=\frac{1}{\lambda}=\frac{E}{h c}
$$

GNP: $\quad \frac{1}{h_{c}} E\left({ }^{2} S_{1 / 2}\right) \equiv 0.0 \mathrm{~cm}^{-1}$
EXC: $\frac{1}{h_{c}} E\left({ }^{2} P_{1 / 2}\right)=16,956.2 \mathrm{~cm}^{-1}$

$$
\begin{aligned}
\Rightarrow \lambda & =589.76 \mathrm{~nm} \text { "DI LINE" (YELLOW) } \\
\frac{1}{h c} E\left({ }^{2} P_{312}\right) & =16,973.4 \mathrm{~cm}^{4} \\
\Rightarrow \lambda & =589.16 \mathrm{~nm} \text { "D2 LINE" }
\end{aligned}
$$

SPLITTING:

$$
\begin{aligned}
E\left({ }^{2} p_{3 / 2}\right)-E\left({ }^{2} p_{1 / 2}\right) & =17.2 \mathrm{~cm}^{-1} \\
\Rightarrow \lambda & =0.581 \mathrm{~mm} \\
& f=\frac{c}{\lambda}=516 \mathrm{GHz}
\end{aligned}\binom{\text { FAR INFRARED/ }}{\text { THE BAND }}
$$

Hyper fine structure

- Fine structure suffices for many purposes But sometimes need more precision EFFECT OF NUCLEAR SPIN MAGNETIC MOMENT

$\tilde{\mu}_{N}$	$\vec{\phi}_{e^{-}}^{\vec{\mu}_{e}}$
$\hat{\phi}$	(TwO MAGNETS)

Nus.
e^{-}PRODUCES \vec{B} fIELD, $\vec{B}_{e} \alpha-\vec{J} \quad$ (APPROX.)
INTERACTS w/ MAGNETIC MOMENT of NUC.
LET $\vec{I}=$ NUS. SPIN ANE, MOMENTUM

$$
\vec{\mu}_{N} \propto \vec{I}
$$

ENERGY of $\vec{\mu}_{N}$ iN $\vec{B}_{e}:-\vec{\mu}_{N} \cdot \vec{B}_{e} \propto \vec{I} \cdot \vec{J}$

$$
\hat{H}_{H f} \approx A \vec{I} \cdot \vec{J}
$$

SAME TRICK: $\vec{F} \equiv \vec{I}+\vec{J} \quad\binom{$ TOTAL INTERNAL ANGULAR }{ MOM ENTUM Of ATOM }

$$
\begin{aligned}
& \vec{F}^{2}=(\vec{I}+\vec{J}) \cdot(\vec{I}+\vec{J})=\vec{I}^{2}+2 \vec{I} \cdot \vec{J}+\vec{J}^{2} \\
& \vec{I} \cdot \vec{J}=\frac{1}{2}\left(\vec{F}^{2}-\vec{I}^{2}-\vec{J}^{2}\right)
\end{aligned}
$$

Hep eigenvalues:

$$
E_{H F}=\frac{A}{2} \hbar^{2}[F(F+1)-I(I+1)-J(J+1)]
$$

ALLOWED VALUES OF F :

$$
F=|I-J|, \ldots, I+J
$$

E.C. ${ }^{23} \mathrm{Na}: \quad I=\frac{3}{2}$

END STATE: 3 s
a) FIND S, L, J \& TERM/LEUEL SYMBOL (RENEW)

$$
S=\frac{1}{2}, L=0, J=\frac{1}{2} ; \quad{ }^{2} S_{1 / 2}
$$

b) FIND ALLOWED F

$$
\begin{aligned}
& F_{\text {min }}=|I-s|=\frac{3}{2}-\frac{1}{2}=1 \\
& F_{\text {max }}=I+s=\frac{3}{2}+\frac{1}{2}=2 \\
& F=1,2
\end{aligned}
$$

DIAGRAM:

$$
\begin{aligned}
& 2 S_{1 / 2}-\hat{V}_{\Delta E} F=2 \\
& \quad \Delta E=h f ; f=1.771 \mathrm{GHz}
\end{aligned}
$$

$$
\text { PHY } 446 \text { SPRING } 2020
$$

LECTURE 7
2/10/2020

- revie hang. mom. addition
- Fine a hyperfine structure

WARM-UP

EX. Na ExCITED States $(z=11)$
GID $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s$
ExC. $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 p$
L=0, $s=0$ Valence electron has all
For Filled the angular momentum shells
a) TOTAL L \& S Quantum it's in EXc. State

$$
L=1, \quad S=\frac{1}{2}
$$

b) TERM SYMBOL: ${ }^{2} P$
c) POSSIBLE J vaLues: $J=1-\frac{1}{2}, 1+\frac{1}{2}=\frac{1}{2}, \frac{3}{2}$

$$
2 s+1 L_{J}={ }^{2} P_{\frac{1}{2}}, \quad{ }^{2} P_{3 / 2} \text { ©"LGUGL" }
$$

Na GND State $J=\left|0-\frac{1}{2}\right|, O+\frac{1}{2}=\frac{1}{2}$
TERM ALEUEL SYMBD: ${ }^{2} \mathrm{~S}_{1 / 2}$
Na energy levels (Fine Structure) - First few "Gross" Structure fine structure
Exc. $3 p-2 p \quad 3 p=5=3 / 2 \quad \begin{aligned} & 2 p_{3 / 2} \\ & 5=1 / 2\end{aligned} \quad \begin{aligned} & 2 p_{1 / 2}\end{aligned}$
GNP $35-{ }^{2} S \quad 35 \quad-5=\frac{1}{2} \quad{ }^{2} S_{1 / 2}$
ENERGY SCALES - MIST DATABASE

$$
C m^{-1}=\frac{1}{\lambda}=\frac{E}{h c}
$$

END: $\quad \frac{1}{n c} E\left({ }^{2} S_{1 / 2}\right) \equiv 0.0 \mathrm{~cm}^{-1}$
EXC. $\frac{1}{\mathrm{nc}} E\left({ }^{2} p_{1 / 2}\right)=16,956.2 \mathrm{~cm}^{-1}$

$$
\begin{aligned}
\Rightarrow \lambda & =589.76 \mathrm{~nm} \text { "DI LING" (YELLOW) } \\
\frac{1}{\mathrm{hc}} E\left({ }^{2} P_{3 / 2}\right) & =16,973.4 \mathrm{~cm}^{4} \\
\Rightarrow \lambda & =589.16 \mathrm{~nm} \text { "D2 LINE" }
\end{aligned}
$$

SPLITTING:

$$
\begin{aligned}
& E\left({ }^{2} P_{3 / 2}\right)-E\left({ }^{2} p_{1 / 2}\right)=17.2 \mathrm{~cm}^{-1} \\
& \Rightarrow \lambda=0.581 \mathrm{~mm} \\
& f=\frac{c}{\lambda}=516 \mathrm{GHz}\binom{\text { FAR INFRARED }}{\text { THE BAND }}
\end{aligned}
$$

Angular momentum addition
Two angular momenta, we $\vec{L}+\vec{S}$
LET $\vec{J}=\vec{L} F^{\vec{S}}$

Two ways to represent the Quantum states

1. USING L_{z}, S_{z} "UNCOUPLED BASIS"
2. USING J^{2}, J_{z} "COUPLED BASIS"

USE COUPLED BASIS B/C $\vec{L} \vec{t}$ 'S INTERACT

- $\vec{L} 4 \vec{S}$ INTERACT $\Rightarrow \vec{L}, \vec{S}$ NOT CONSTANT
- no external torque $\Rightarrow \vec{J}$ Constant

Classical

DECOUPLED BASIS
Quantum States: $\left(L S M_{L} M_{s}\right\rangle \equiv\left(M_{l} M_{s}\right)$

$$
\begin{aligned}
& \vec{L}^{2}\left|M_{L} M_{S}\right\rangle=\hbar^{2} L(L+1)\left|M_{L} M_{S}\right\rangle \\
& \hat{S}^{2}\left|M_{L} M_{S}\right\rangle=\hbar^{2} S(S+1)\left|M_{L} M_{S}\right\rangle \\
& \hat{L}_{Z}\left|M_{L} M_{S}\right\rangle=\hbar M_{L}\left|M_{L} M_{S}\right\rangle \\
& \hat{S}_{2}\left|M_{L} M_{S}\right\rangle=\hbar M_{S}\left(M_{L} M_{S}\right)
\end{aligned}
$$

COUPLED BASIS
(TOTAL $\vec{J}=\vec{L}+\vec{s}$)
\vec{J} OBEYS ANE MOM. COMMUTATION RULES

$$
\begin{aligned}
& {\left[J_{x}, J_{y}\right] }=i \hbar J_{z} \text { etc } \\
& \Rightarrow\left[\vec{J}^{2}, J_{z}\right]=0 \rightarrow \text { FIND simultaneous } \\
& \text { EIG. States }
\end{aligned}
$$

Introduce Quantum numbers $J, M_{\text {J }}$ COUPLED BASIS: $\left|L, S, J M_{3}\right\rangle=\left|J M_{J}\right\rangle$

Eig. values of J^{2}, J_{z} :

$$
\begin{aligned}
& \left.\vec{J}^{2}\left|J M_{5}\right\rangle=\hbar^{2} J(J+1) \mid J M_{5}\right) \\
& \left.J J M_{J}\right)=\hbar M_{J}\left|J M_{J}\right\rangle
\end{aligned}
$$

WHERE $J=|L-S|, \ldots, L+S$

$$
M_{J}=-J, \cdots, J
$$

COUNT: $\quad\left[\right.$ let $\left.j_{2}=\operatorname{Max}(L, S), j_{1}=\operatorname{Min}(L, S)\right]$
BASIS \#STATES

$$
\begin{aligned}
& \left|M_{L} M_{S}\right\rangle \quad(2 L+1)(2 S+1) \\
& \left.\left|J M_{J}\right\rangle \quad\left(2\left(j_{2}-j_{1}\right)+1\right]+2\left(j_{2}-j_{1}+1\right)+1\right\} \text { ARithatic. } \\
& \left.\ldots+2\left(j_{1}+j_{2}\right)+1\right\} \text { SERiEs } \\
& =\underbrace{\left[\frac{2\left(2 j_{2}\right)+2}{2}\right]}_{\text {MEAN }} \underbrace{\left(j_{1}+j_{2}-\left(j_{2}-j_{1}\right)+1\right)}_{\text {NuMBER }} \\
& =\left(2 j_{2}+1\right)(2 j+1)=(2 L+1)(2 S+1)
\end{aligned}
$$

CHANGE of bASIS formula:
FOR ANY BASIS $\{|n\rangle\}$

$$
|\psi\rangle=\sum_{n}|n\rangle\langle n \mid \psi\rangle
$$

Relate coupled \& Decoupled Bases

$$
\begin{aligned}
\left|J M_{J}\right\rangle=\sum_{m_{L} m_{S}}\left|m_{L} M_{S}\right\rangle & \underbrace{m_{L} m_{S}\left|J M_{S}\right\rangle}_{\text {CLEBSCH-GORDAN COEd. }} \\
& \text { (REAL-VALUED) }
\end{aligned}
$$

LIKEWISE,

$$
\left|M_{L} M_{S}\right\rangle=\sum_{S, M_{S}}\left|J M_{J}\right\rangle \underbrace{\left\langle J M_{J} \mid M_{L} M_{S}\right\rangle}_{\text {SAME } C G}
$$

Hyper fine structure

- Fine structure suffices for many purposes But sometimes need More precision effect of nuclear spin magnetic moment

| $\tilde{\mu}_{N}$ | $\vec{\mu}_{e}$ |
| :--- | :--- | :--- |
| $\stackrel{p_{e}}{\infty}$ | (~TwOMAGNETS) |
| NUS. | |

e^{-}Produces \vec{B} fiELD, $\vec{B}_{e} \alpha-\vec{J} \quad$ (Approx.)
INTERACTS w/ MAGNETIC MOMENT OF NUC.
LET $\vec{I}=$ NUS. SPIN ANE, MOMENTUM

$$
\vec{\mu}_{N} \propto \vec{I}
$$

ENERGY of $\vec{\mu}_{N}$ IN $\vec{B}_{e}:-\vec{\mu}_{N} \cdot \vec{B}_{e} \propto \vec{I} \cdot \vec{J}$

$$
\hat{H}_{H f} \approx A \vec{I} \cdot \vec{J} / \hbar^{2}
$$

SAME TRICK: $\vec{F} \equiv \vec{I}+\vec{J} \quad\binom{$ TOTAL internal angular }{ MOM Entum of ATom }

$$
\begin{aligned}
& \vec{F}^{2}=(\vec{I}+\vec{J}) \cdot(\vec{I}+\vec{J})=\vec{I}^{2}+2 \vec{I} \cdot \vec{J}+\vec{J}^{2} \\
& \vec{I} \cdot \vec{J}=\frac{1}{2}\left(\vec{F}^{2}-\vec{I}^{2}-\vec{J}^{2}\right)
\end{aligned}
$$

Heb eigenvalues:

$$
E_{H F}=\frac{A}{2} \quad[F(F+1)-I(I+1)-J(J+1)]
$$

ALLOWED VALUES OF F :

$$
\begin{aligned}
& F=|I-J|, \ldots, I+J \\
& \text { E. .x. }{ }^{23} \mathrm{Na}: I=\frac{3}{2}
\end{aligned}
$$

END STATE: 3 s
a) FIND $S, L, 3$ \& TERM/LEUEL SYMBOL (REVIEW)

$$
S=\frac{1}{2}, L=0, J=\frac{1}{2} ; \quad S_{1 / 2}
$$

b) FIND ALLOWED F

$$
\begin{aligned}
& F_{\text {min }}=|I-S|=\frac{3}{2}-\frac{1}{2}=1 \\
& F_{\text {max }}=I+S=\frac{3}{2}+\frac{1}{2}=2 \\
& F_{1}=1,2
\end{aligned}
$$

DIAGRAM:

$$
\begin{aligned}
& 2 S_{1 / 2}-\hat{\vartheta}^{2 E} F=1 \\
& \Delta E=h f ; f=1.771 \mathrm{GHz}
\end{aligned}
$$

ATOMIC HAMILTONIAN (NO APPLIED FIELDS)

$H_{\text {NR }}$ Commutes w/ $\vec{L} \& \vec{S}$

$$
\Rightarrow \text { LS COUPLING }
$$

$H_{f S} \approx \frac{\beta}{\hbar^{2}} \vec{L} \cdot \vec{s} \quad$ COMMUTES w / \vec{J}^{2}
\Rightarrow SPLIT ACCORDWG To J

$$
H_{\text {HES }} \approx \frac{A}{\hbar^{2}} \vec{I} \cdot \vec{J} \text { commutes w/ } \vec{F}^{2}
$$

\Rightarrow SPLIT ACCORDING TO F

PHY 446 SPRING 2020
Lecture 8

2/12/2020

- WED FEB 19: SOMMER AWAY/QUIZ/HWL \rightarrow FEB24/BIAGG10
- TODAY: optical transitions (overview)
- selection rules, z-leuel atom
review: define the angular momentum variables
a) L ELECTRON ORBMAL ANG. MOMENTUM
b) S ELECTRON SPIN
c) $J \quad \vec{L}+\vec{S}=\vec{J}$
d) I nuclear spin
e) F Total internal avg. momentum $\vec{I}+\vec{J}$

ATOM-LIGHT INTERACTION
PREVIOUS: ATOM \approx CLASSICAL HARMONIC OSCILLATOR
NOW: ATOM $=$ QUANTUM SYSTEM
3 BASIC PROCESSES

1. ABSORPTION

- a new, identical PHOTON APPEARS

3. SPONTANEOUS EMISSION in (o) $\square^{\text {I }}$ OUT (i)

Absorption
multilevel atom in em field (laser) at freq w (EnERGY LEUELS)

Two -Level

ATOM EXCITED TO RESONANT OR NEAR -RESONANT LEVEL: $\hbar \omega \approx E_{f}-E_{i}$ (ENERGY CONSERVATION)
\rightarrow APPROX. BIC OF TIME-ENERGY UNCERTAINTY

- finite pulse; finite exicted state lifetime

CAN NEGLECT OTHER LEVELS
\rightarrow TWO-LEVEL MODEL

Not included in two-leuel model:
MULTIPHOTON TRANSITIONS

- Multiphoton resonance: need 3 or more levels

DEGENERACY IN TWO-LEUEL MODEL i.e. ${ }^{23} \mathrm{Na}$ END STATE MANIFOLD

$$
\begin{gathered}
3 s \cdots \underbrace{}_{F=1} \leqslant=2 \\
F=1 \text { STATES: } \mid 3 s, \mu_{f}=-1,0,1 \\
\left.\mu_{f}=-1,0, f=1, \mu_{f}\right\rangle \\
\text { (THREE-FOLD D EGENGRATE) }
\end{gathered}
$$

EXCITED STATE ALSO DEGENERATE
i.e. $\left|3 p,{ }^{2} p_{1 / 2}, F^{\prime}=2, M_{f}^{\prime}\right\rangle$
for $\mu_{f}^{\prime}=-2,-1,0,1,2$

Two levels, but many states

$$
\begin{aligned}
& P_{1 / 2}, F^{\prime}=2 \quad-2-\overline{0}-\overline{2} \mu_{f}^{\prime} \\
& S_{1 / 2}, F=1 \quad-1 \quad \overline{0} \quad M_{f}
\end{aligned}
$$

REDUCTION To Two STATES

- Assume atom starts in a specific state

$$
\text { e.g. }|\psi(t=0)\rangle=|1\rangle=\left|3 s,{ }^{2} S_{1 / 2}, F=1, M_{f} \approx 1\right\rangle
$$

Final State:

- Photon carries angular momentum $\vec{j} \kappa_{\text {a.k.a. }}$ with $j=1$ ("SPIN 1")

ATOM ABSORBS PHOTON, GAINS ANGULAR MOMENTUM

$$
\vec{F}^{\prime}=\vec{F}+\vec{j}
$$

- ELECTRIC FIELD AT ATOM: $\vec{E}(t)=E_{0} \operatorname{Re}\left[\hat{\varepsilon} e^{-i \omega t}\right]$

$$
\begin{aligned}
& \text { POLARIZATION } \hat{\varepsilon} \\
& \left(\begin{array}{l|c|c|c}
\hat{\varepsilon}_{t}=-\frac{1}{\sqrt{2}}(\hat{x}+i \hat{y}) & \text { PHOTON } & M_{j} & \Delta M_{f} \\
\tilde{\varepsilon}_{0}=\tilde{z} & 1 & 1 & \text { SYM BL }^{+} \\
\hat{\varepsilon}_{-}=\frac{1}{\sqrt{2}}(\hat{x}-i \hat{y}) & -1 & -1 & \sigma^{-}
\end{array}\right.
\end{aligned}
$$

"SPherical basis"

SELECTION RULES

- Allowed $f^{\prime}=|F-j|, \ldots, f+j$

$$
=|f-1|, \ldots, f+1
$$

CASE 1) $F \geq 1: F^{\prime}=F-1, F, f+1$

$$
\text { ie. } \Delta F=0, \pm 1
$$

CASE 2) $F=0: \quad F^{\prime}=1$
i.e. $F=O \rightarrow f^{\prime}=0$ FORBIDDEN

- ALLOWED $M_{f}^{\prime}=M_{f}+M_{j} \Rightarrow \Delta M_{f}=0, \pm 1$
\Rightarrow ONLY ONE ALLOWED FINAL STATE
E.S. For σ^{+}Transition, $M_{f}^{\prime}=M_{f}+1$ CONSIDER $\quad F=1 \rightarrow F^{\prime}=2$ TRANSITION SUPPOSE INITIAL STATE IS $|1\rangle=\left|F=1, M_{f}=1\right\rangle$ THEN FINAL STATE is $|2\rangle=\left(f^{\prime}=2, M_{f}=2\right\rangle$

$$
\begin{gathered}
F^{\prime}=2 \quad \overline{-2}-1 \overline{0} \overline{1} \overline{\mu_{2}} \mu_{f}^{\prime} \\
F=1 \quad-1=\frac{\sigma^{+}}{1} M_{f}
\end{gathered}
$$

STIMULATED EMISSION N~~~~~~~~N
NEW PHOTON is identical
atom loses angular momentum \vec{j}
AND ENERGY $\hbar \omega$
\Rightarrow GOES BACK TO ORIGINAL GROUND STATE
SO TWO-LEUEL \Rightarrow TwO-STATE SYSTEM

$$
\begin{gathered}
|1\rangle=\left|F M_{f}\right\rangle \\
|2\rangle=\left|F^{\prime} M_{f}^{\prime}\right\rangle \\
\Delta F=0, \pm \mid \quad\left(\text { NO } F=0 \rightarrow F^{\prime}=0\right) \\
\Delta M_{f}=0, \pm 1 \quad \text { DEPENDING ON POLARIZATION }
\end{gathered}
$$

SPONTANEOUS EMISSION

- can decay to any level
breaks the z-LEUEL MODEL
egg. $\quad F^{\prime}=2 \quad$ - 느ํㄴㄴ $\frac{2}{1} \quad M_{F}^{\prime}$

SOMETIMES STILL 2-STATE

$$
\begin{array}{ll}
F^{\prime}=2 & -\underline{2}-10 \\
F=1 & -1 \\
F=0 & -0
\end{array}
$$

- only one allowed transition
"CyCling Transition"

2-State model also good when spont. decay negll gable

- SHORT TIMES $t<2$ ir
i.e. Microwave transition within gid state $\gamma_{m_{1}} \times \omega^{3} \rightarrow 0$ As $\omega \rightarrow 0$
- Negligible excited state Prob.
i.e. Large detuning

INTERACTIon w/ External fields

- Hamiltonian of atom in free space: \hat{H}_{0} WITH APPLIED fields, hamiltonian is

$$
\hat{H}(t)=\hat{H}_{0}+\frac{\hat{H}^{\prime}(t)}{\partial P_{E R T U R B A T I O N}}
$$

ELELTRIL dipole interaction

- Fur atom in em field, first-order Approx. is:

$$
H^{\prime}(t)=-\vec{d} \cdot \vec{E}(t)
$$

WHERE \vec{d} = DIPOLE OPERATOR. FOR N ELECTRONS:

$$
\vec{d}=\sum_{i=1}^{N}\left(-e \vec{r}_{i}\right) \quad \text {-ASSUMING NUCLEUS AT } \vec{r}=0
$$

MAGNETIC DIPOLE INTERACTION

- Interaction w/ magnetic field \vec{B}

$$
H^{\prime}(t)=-\vec{\mu} \cdot \vec{B}(t)
$$

WHERE $\vec{\mu}=$ MAGNETIC DIPOLE OPERATOR

$$
\begin{aligned}
& =-\frac{\mu_{B}}{\hbar}\left(g_{L} \vec{L}+g_{S} \vec{S}+g_{I} \vec{I}\right) \\
& \approx-\frac{\mu_{B}}{\hbar}(\vec{L}+2 \vec{S})
\end{aligned}
$$

PHY 446 SPRING 2020
Lecture 9
$2 / 17 / 2020$

- two-level atom
- first-order time-dependent solution

Two-LEUEL ATOM

S PATES $|1\rangle$ \& $|2\rangle$
ENERGIES $H_{0}|1\rangle=E_{1}|1\rangle$

$$
H_{0}|2\rangle=E_{2}|2\rangle
$$

DEFINE: $\omega_{1}=E_{1} / \hbar, \omega_{2}=E_{2} / \hbar$

$$
\omega_{0}=\omega_{2}-\omega_{1}-\text { RESONANCE FREQ. }
$$

WAVE FUNCTION: $|\psi\rangle=c_{1} e^{-i \omega_{1} t}|1\rangle+c_{2} e^{-i \omega_{2} t}|2\rangle$

$$
\text { - } C_{1}, C_{2} \text { COST }
$$

SATISFIES T.D.S.E. \quad i $\partial_{t}|\psi\rangle=H_{0}|\psi\rangle$

$$
\left.\left.\begin{array}{rl}
i \hbar & \partial_{t}|\psi\rangle
\end{array}\right)=i \hbar\left(c_{1}\left(-i \omega_{1}\right) e^{-i \omega_{1} t} \mid 1\right)+c_{2}\left(-i \omega_{2}\right) e^{-i \omega_{2} t}|2\rangle\right)
$$

External field

$$
H(t)=H_{0}+H^{\prime}(t)
$$

ELECTRIC DIPOLE INTERACTION

$$
H^{\prime}=-\vec{d} \cdot \vec{E}(t)
$$

WHERE $\vec{E}(t)=\vec{E}(\vec{r}=0, t)$
VALID WHEN $k r \ll 1$

$$
\underbrace{\left(\frac{2 \pi}{\lambda}\right)\left(a_{0}\right)}_{\sim 10^{-4} \text { for VISIBLE LIGAT }} \ll 1
$$

Expectation value of H^{\prime} is zero:

$$
\langle 1| H^{\prime}|1\rangle=-\underbrace{\langle 1| \vec{d}|1\rangle}_{\text {ZERO }} \cdot \vec{E}(t)=0
$$

SAME FOR $|2\rangle$,

$$
\langle 2| H^{\prime}|2\rangle=0
$$

TIME EVOLUTION

$$
\begin{aligned}
& i \hbar \partial_{t}|\psi\rangle=H\left(t_{t}|\psi\rangle \quad\right. \text { (TDSE) } \\
& \text { LET }|\psi(t)\rangle=\underbrace{c_{1}(t)}_{\text {CHANGES DUE TO HI }} \underbrace{\underbrace{}_{\text {THGORN PART }}}_{\substack{-i \omega_{1} t}}|1\rangle+c_{2}(t) e^{-i \omega_{2} t}|2\rangle
\end{aligned}
$$

PLUG INTO T.O.S.E.

$$
\begin{aligned}
& \text { LHS }=i \hbar \partial_{t}|\psi\rangle=i \hbar\left[\left(\dot{c}_{1}-i \omega_{1} c_{1}\right) e^{-i \omega_{1} t} / 1\right) \\
& \left(\dot{c}_{2}-i \omega_{2} c_{2} e^{\left.-i \omega_{2} t / 2\right\rangle}\right] \\
& \left.=\left(i \hbar \dot{c}_{1}+\hbar \omega_{1} c_{1}\right) e^{-i \omega_{1} t} \|_{1}\right) \\
& +\left(i \hbar \dot{c}_{2}+\hbar \omega_{2} c_{2}\right) e^{-i \omega_{2} t}\{2\rangle \\
& \text { RHS }=\left(H_{0}+H^{\prime}\right)(\psi)=H_{0}(\psi)+H^{\prime}(\psi) \\
& =c_{1} e^{-i \omega_{1} t} \hbar \omega_{1}(1)+c_{2} e^{-i \omega_{2} t} \hbar \omega_{2}(2) \\
& +C_{1} e^{-i \omega_{1} t} H(1)+C_{2} e^{-i \omega_{2} t} H^{\prime}(2)
\end{aligned}
$$

MULTIPLY BY<11

$$
\begin{aligned}
& \text { LTIPLY BY<1| } \\
& \left.\left.i \hbar \dot{C}_{1} e^{-i \omega_{1} t}=C_{1} e^{-i \omega_{1} t}\langle 1| H_{1} \mid 1\right)+C_{2} e^{-i \omega_{2} t}\langle |\left|H^{\prime}\right| 2\right\rangle \\
& i \hbar \dot{C}_{1}=e^{-i\left(\omega_{2}-\omega_{1}\right) t}\langle 1| H^{\prime}(t)|2\rangle C_{2} \\
& =e^{-i \omega_{0} t}\langle 1| H^{\prime}(t)|2\rangle C_{2}
\end{aligned}
$$

LIKEWISE, MULTIPLY BY <21:

$$
i \hbar \dot{C}_{2}=e^{i \omega_{0} t}\langle 2| H^{\prime}(t)|1\rangle C_{1}
$$

LINEARLY POLARIZED LIGHT

$$
\begin{aligned}
& \vec{E}=E_{0} \hat{x} \cos (\omega t) \\
& H^{\prime}=\vec{d} \cdot \vec{E}=-d x E_{0} \cos \omega t \\
&\langle 1| H^{\prime}(t)|2\rangle=\langle 1|-d x E_{0} \cos (\omega t)|2\rangle \\
&=-E_{0}\langle 1| d_{x}|2\rangle \cos (\omega t) \\
& \equiv \hbar \Omega \cos (\omega t)
\end{aligned}
$$

RABI FREQUENCY

$$
\Omega=-\frac{1}{\hbar} E_{0}\langle 1| d x|2\rangle
$$

MDSE:

$$
\left\{\begin{array}{l}
i \dot{c}_{1}=\Omega \cos (\omega t) e^{-i \omega_{0} t} C_{2} \\
i \dot{c}_{2}=\Omega^{*} \cos (\omega t) e^{i \omega_{0} t} c_{1}
\end{array}\right.
$$

FIRST-ORDER SOLUTION

- consider $C_{1}(0)=1, \quad C_{2}(0)=0$
- sudden turnon of field
- fur short times, weak field, or large detuning
\rightarrow SMALL EXCITATION Probability $\left|E_{2}\right|^{2}$
APPROXIMATE: $\quad C_{1}(t) \approx 1 ; C_{2}(t) \approx 0$

$$
\begin{aligned}
i \dot{c}_{2} & =\Omega^{*} \cos (\omega t) e^{i \omega_{0} t} c_{1}^{\approx} \\
& \approx \frac{\Omega^{*}}{2}\left(e^{i \omega t}+e^{-i \omega t}\right) e^{i \omega_{6} t} \\
& =\frac{\Omega^{*}}{2}(\underbrace{e^{i\left(\omega t \omega_{6}\right) t}}_{\downarrow}+e^{i\left(\omega_{0}-\omega\right) t})
\end{aligned}
$$

"Counter-rotathg" "co-rotating" TERM TERM

INTEGRATE:

$$
\begin{aligned}
& c_{2}(t)=\int_{0}^{t} \dot{C}_{2} d t+\overbrace{C_{2}(0)}^{0} \\
& =-\frac{i}{2} \Omega^{x} \int_{0}^{t}\left(e^{i\left(\omega+\omega_{0}\right) t^{\prime}}+e^{i\left(\omega_{0}-\omega\right) t^{\prime}}\right) d t^{\prime} \\
& =\frac{-i \Omega^{*}}{2}\left[\frac{e^{i\left(\omega+\omega_{0}\right) t}-1}{i\left(\omega+\omega_{0}\right)}+\frac{e^{i\left(\omega_{0}-\omega\right) t}-1}{i\left(\omega_{0}-\omega\right)}\right]
\end{aligned}
$$

(HW2, Problem 4 USES THIS)

- EquIVALENT TO LORENTZ OSCILLATOR wI $\gamma=0$

NEAR-RESONANCE APPROX.
$\left|\omega-\omega_{0}\right| \ll \omega_{0}$
\Rightarrow CO-ROTATING TERM DOMINATES
"ROTATING WAVE APpROXIMATION"
NEGLECT COUNTER-ROTATING TERM

$$
\begin{aligned}
& C_{2}(t) \approx-\frac{\Omega^{*}}{2} \frac{e^{i\left(\omega_{0}-w\right) t}-1}{\left(\omega_{0}-w\right)} \\
& \Delta=w-\omega_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \text { EXCITATION PROB. } \\
& \begin{aligned}
\left|C_{2}(t)\right|^{2} & \approx\left|\frac{\Omega}{\Delta}\right|^{2}\left|\frac{e^{-i \Delta t}-1}{2}\right|^{2} \\
& =\left|\frac{\Omega}{\Delta}\right|^{2}\left|e^{-i \Delta t / 2} \frac{e^{-i \Delta t / 2}-e^{i \Delta t / 2}}{2}\right|^{2} \\
& =\left|\frac{\Omega}{\Delta}\right|^{2} \sin ^{2}\left(\frac{\Delta}{2} t\right)
\end{aligned}
\end{aligned}
$$

VALID WHEN $\left|C_{2}\right| \ll \mid$

For glued t

MAIN POINTS:

1) $\left.\left|c_{2}\right|^{2} \propto|\Omega|^{2} \propto\left|\langle 1| d_{x}\right| \alpha\right\rangle\left.\right|^{2}$
\Rightarrow ALLOWED TRANSITIONS HAVE $\langle 1| d_{x}|2\rangle \neq 0$ encodes selection rules
2) $\left|C_{2}\right|^{2}$ LARGEST NEAR RESONANCE

DIPOLE MOMENT

$$
\begin{aligned}
|\psi\rangle= & c_{1} e^{-i \omega_{1} t}(1\rangle+c_{2} e^{-i \omega_{2} t}|2\rangle \\
\left\langle d_{x}\right\rangle= & \langle\psi| d_{x}|\psi\rangle=\left(c_{1}^{*} e^{i \omega_{1} t}\langle 1|+c_{2}^{*} e^{i \omega_{2} t}\langle 2|\right) \\
& \left.d_{x}\left(c_{1} e^{-i \omega_{1} t} \mid 1\right)+c_{2} e^{-i \omega_{2} t}|2\rangle\right) \\
= & c_{1}^{*} c_{2} e^{i\left(\omega_{1}-\omega_{2}\right) t}\langle 1| d_{x}|2\rangle+c \cdot c \\
= & 2 \operatorname{Re}\left[c_{1}^{*} c_{2} e^{-i \omega_{0} t}\langle 1| d_{x}|2\rangle\right]
\end{aligned}
$$

Polarizability
CONSIDER ADIABATIC RAMP OF FIELD, $(\Omega|\ll| \Delta \mid$ (TO REACH STEADY STATE who DAmpIng)

$$
\vec{E}(t)=\left\{\begin{array}{cc}
e^{\Gamma t} E_{E_{0}} \hat{x} \cos (\omega t), & t<0 \\
E_{0} \hat{x} \cos (\omega t), & t>0
\end{array}\right.
$$

- Slow RAmp: $\Gamma \ll|\Delta|$

INITIAL GOND. $C_{1}(-\infty)=1, \quad C_{2}(-\infty)=0$

- Rotating wave Approx ($\left.|\Delta| \ll \omega_{0}\right)$ for simplicity For $t>0$:

$$
\begin{aligned}
& C_{2}(t) \approx-\frac{i}{2} \Omega^{*} {\left[\int_{-\infty}^{0}\left(e^{\Gamma t} e^{i\left(\omega_{0}-\omega\right) t^{\prime}}\right) d t^{\prime}\right.} \\
&\left.+\int_{0}^{t} e^{i\left(\omega_{0}-\omega\right) t^{\prime}} d t^{\prime}\right] \\
&=-\frac{i}{2} \Omega^{*}[\left.\frac{1-0}{5-i \Delta}+\frac{e^{-i \Delta t}-1}{-i \Delta}\right] \\
& \approx-\frac{i}{2} \Omega^{*}\left(\frac{e^{-i \Delta t}}{-i \Delta}\right)=\frac{\Omega^{*}}{2 \Delta} e^{-i \Delta t}
\end{aligned}
$$

PLUG IN fOR <dx):

$$
\begin{aligned}
\left\langle d_{x}\right\rangle & =2 \operatorname{Re}\left[C_{1}^{*} C_{2} e^{-i \omega_{0} t}\langle 1| d_{x}|2\rangle\right] \\
& \approx 2 \operatorname{Re}\left[\frac{\Omega^{*}}{2 \Delta} e^{-i \Delta t} e^{-i \omega_{0} t}\langle 1| d_{x}|2\rangle\right] \\
& \left(\Omega^{*}=-\frac{1}{\hbar} E_{0}\langle 2| d_{x}|1\rangle\right) \\
& =-\frac{E_{0}}{\hbar \Delta} \operatorname{Re}\left[-\frac{E_{0}}{\hbar} \frac{\langle 2| d_{x}|1\rangle}{\Delta} e^{-i\left(\omega-\omega_{0}\right) t} e^{-i \omega_{0} t}\langle 1| d_{x}|2\rangle\right] \\
& \left.\left.=-\frac{E_{0}}{\hbar \Delta} \right\rvert\,\langle 1| d_{x}|2\rangle^{2} e^{-i \omega t}\right]
\end{aligned}
$$

Polarizability (α)

$$
\alpha(\Delta) \approx-\frac{\left.\left|\langle 1| d_{x}\right| 2\right\rangle\left.\right|^{2}}{\hbar \Delta}
$$

LORENTZ OSCILLATOR $(\gamma=0)$:

$$
\alpha_{C_{1}}^{(\Delta)} \approx \frac{-e^{2}}{2 m \omega_{0}} \frac{1}{\Delta} \quad\binom{\text { NEAR-RESONANCE }}{\text { APPROX. }}
$$

OSCILLATOR STRENGTH

$$
\begin{aligned}
& \alpha(\Delta) \approx-\frac{f_{12} e^{2}}{2 m w_{0}} \frac{1}{\Delta} \\
& \frac{f_{12} e^{2}}{2 m w_{0}}=\frac{\left.\left|\langle 1| d_{x}\right| 2\right\rangle\left.\right|^{2}}{\hbar}
\end{aligned}
$$

$$
\longrightarrow
$$

$$
\left.f_{12}=\frac{2 m \omega_{0}}{e^{2} \hbar}\left|\langle 1| d_{x}\right| \alpha\right\rangle\left.\right|^{2} \leqq 1
$$

"stronge Transitions: $f_{12} \sim 1$

SKIP:
Circularly polarized

$$
\begin{aligned}
\vec{E} & =\operatorname{Re}\left[E_{0} \hat{\varepsilon}_{1} e^{-i \omega t}\right], \hat{\varepsilon}_{1}=-\frac{1}{\sqrt{2}}(\hat{x}+i \hat{y}) \\
& =\frac{-E_{0}}{\sqrt{2}} \operatorname{Re}[(\hat{x}+i \hat{y})(\cos \omega t-i \sin \omega t)] \\
& \hat{x} \cos \omega t+\hat{y} \sin \omega t \\
& -\frac{E_{0}}{\sqrt{2}}(\hat{x} \cos (\omega t)+\hat{y} \sin (\omega t)) \\
& =-\vec{d} \cdot \vec{E}=\vec{d} \cdot \frac{E_{0}}{\sqrt{2}}(\hat{x} \cos (\omega t)+\hat{y} \sin (\omega t)) \\
& =\frac{E_{0}}{\sqrt{2}}\left[d_{x} \cos (\omega t)+d_{y} \sin (\omega t)\right) \\
& =\frac{E_{0}}{2 \sqrt{2}}\left[e_{x} \frac{1}{2}\left(e^{i \omega t}\left(d_{x}-i d_{y}\right)+e^{-i \omega t}\left(d_{x}+i d_{y}\right)\right]\right. \\
& =\frac{E_{0}}{2}\left[e^{i \omega t} \frac{-i}{2}\left(e^{i \omega t}-e^{-i \omega t}\right)\right] \\
& \left.d_{-}-e^{-i \omega t} d_{+}\right] \\
& d_{+}=\frac{1}{\sqrt{2}}\left(d_{x}-i d_{y}\right)
\end{aligned}
$$

$$
\text { SHY } 446 \text { SPRING } 2020
$$

lecture 10
2/19/2020

- Quiz
- RABI oscillation

LaSt time: 2-LEUEL ATOM

$$
w_{0}=w_{2}-w_{1}
$$

APPLIED FIELD: $\vec{E}(t)=E_{0} \hat{x} \cos (\omega t)$

$$
|\psi(t)\rangle=c_{1}(t) e^{-i \omega t}|1\rangle+c_{2}(t) e^{-i \omega_{2} t}|2\rangle
$$

RABI $f R E Q: \quad \Omega \equiv \frac{-E_{0}}{\hbar}\left\langle 1 / d_{x}(2)\right.$

- DIPOLE OPERATOR

SCHRODINGER EQ:

$$
\left\{\begin{array}{l}
i \dot{c}_{1}=\Omega \cos (\omega t) e^{-i \omega_{0} t} c_{2} \\
i \dot{c}_{2}=\Omega^{*} \cos (\omega t) e^{i \omega_{0} t} c_{1}
\end{array}\right.
$$

LAST TIME: SOLVED APPROXIMATELY
FOR LOW EXCITATION PROBABILITY $C_{1} \approx 1, C_{2} \approx 0$

$$
\Rightarrow\left|C_{2}(t)\right|^{2} \approx\left|\frac{\Omega}{\delta}\right|^{2} \sin ^{2}\left(\frac{\delta}{2} t\right)
$$

- works for large detuning $|\delta />2 / \Omega|$
- ist-order in time dep. pert. theory

RABI OSCILLATION - DIRECT SOLUTION
NOW: SOLVE TO HIGHER ORDER
apply Rotating wave approximation

$$
\begin{aligned}
i \dot{c}_{1} & =\frac{\Omega}{2}\left(e^{i \omega t}+e^{-i \omega t}\right) e^{-i \omega_{0} t} C_{2} \\
& =\frac{\Omega}{2}(e^{i\left(\omega-\omega_{0}\right) t}+\underbrace{\left.e^{-i\left(\omega+\omega_{0}\right) t}\right)}_{\text {NEGLECT (OSCILLATES ToO FAST) }} C_{2} \\
& \approx \frac{\Omega}{2} e^{i\left(\omega-\omega_{0}\right) t} C_{2}=\frac{\Omega}{2} e^{i \delta t} C_{2}
\end{aligned}
$$

- Rotating wave approx.

WHERE $\delta=\omega-\omega_{0}$
Similar for \dot{c}_{2} :

$$
\left\{\begin{array}{l}
i \dot{C}_{1}=\frac{\Omega}{2} e^{i \delta t} C_{2} \\
i \dot{c}_{2}=\frac{\Omega^{*}}{2} e^{-i \delta t} C_{1}
\end{array}\right.
$$

COMBINE:

$$
\begin{aligned}
\ddot{C}_{2} & =-\frac{i \Omega^{*}}{2}\left(-i \delta c_{1}+\dot{C}_{1}\right) e^{-i \delta t} \\
& =-\delta \underbrace{\frac{\Omega^{*}}{2} e^{-i \delta t} c_{1}}_{i \dot{C}_{2}}-\frac{\Omega^{*}}{2} e^{-i \delta t \frac{\Omega}{2}} e^{i \delta t} c_{2} \\
& =-i \delta \dot{C}_{2}-\left|\frac{\Omega}{2}\right|^{2} c_{2} \\
\ddot{C}_{2} & +i \delta \dot{C}_{2}+\left|\frac{\Omega}{2}\right|^{2} c_{2}=0
\end{aligned}
$$

SOLVE LINEAR ODE:

$$
\ddot{C}_{2}+i \delta \dot{C}_{2}+\left|\frac{\Omega}{2}\right|^{2} C_{2}=0
$$

SOLUTION: $c_{2} \sim e^{\lambda t}, \lambda=$ UNKNOWN

$$
\begin{array}{l|l}
\lambda^{2}+i \delta \lambda+\left|\frac{\Omega}{2}\right|^{2}=0 \\
\lambda & =\frac{-i \delta \pm \sqrt{-\delta^{2}-4|\Omega / 2|^{2}}}{2} \\
& =\frac{-i \delta \pm i \sqrt{\delta^{2}+|\Omega|^{2}}}{2} \equiv \frac{-i \delta}{2} \pm i \frac{W}{2}
\end{array} W=\sqrt{\delta^{2}+\left.\Omega\right|^{2}}
$$

INITIAL CONDITION $C_{2}(0)=0$:

$$
C_{2}(t)=e^{-i \delta t / 2} A \sin (W t / 2)
$$

FIND C_{1} :

$$
\begin{aligned}
i \dot{C}_{2} & =\frac{\Omega^{*}}{2} e^{-i \delta t} C_{1} \\
& \Rightarrow C_{1}(t)=\frac{2 i}{\Omega^{*}} e^{i \delta t} \dot{C}_{2} \\
\dot{C}_{2} & =A e^{-i \delta t / 2}\left[-\frac{i \delta}{2} \sin \left(\frac{W t}{2}\right)+\frac{W}{2} \cos \left(\frac{W t}{2}\right)\right] \\
C & =\frac{2 i}{\Omega^{*}} e^{i \delta t / 2} A\left[-\frac{i \delta}{2} \sin \left(\frac{W t}{2}\right)+\frac{W}{2} \cos \left(\frac{W t}{2}\right)\right]
\end{aligned}
$$

FIND A BY NORMALIZING:

$$
\begin{aligned}
& \left|c_{1}\right|^{2}=\frac{1}{|\Omega|^{2}}|A|^{2}\left[\delta^{2} \sin ^{2}\left(\frac{w t}{2}\right)+W^{2} \cos ^{2}\left(\frac{w t}{2}\right)\right] \\
& 1=\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}=|A|^{2}\left[\left(1+\frac{\delta^{2}}{\mid \Omega \Omega^{2}}\right) \sin ^{2}\left(\frac{w t}{2}\right)+\frac{\delta^{2}+|\Omega|^{2}}{\left||\Omega|^{2}\right.} \cos ^{2}\left(\frac{w t}{2}\right)\right] \\
& =|A|^{2} \frac{w^{2}}{|\Omega|^{2}} \Rightarrow|A|^{2}=\frac{|\Omega|^{2}}{w^{2}}
\end{aligned}
$$

LET $A=-i \Omega^{*} / W$

PUT IT ALL TOGETHER:
SOLUTION (FOR $\left.C_{2}(0)=0, G_{1}(0)=1\right)$

$$
\begin{aligned}
& \left\{\begin{array}{l}
C_{1}(t)=\frac{1}{W} e^{i \delta t / 2}\left[-i \delta \sin \left(\frac{w t}{2}\right)+W \cos \left(\frac{w t}{2}\right)\right] \\
C_{2}(t)=-i \frac{\Omega^{x}}{w} e^{-i \delta t / 2} \sin \left(\frac{w t}{2}\right)
\end{array}\right. \\
& W=\sqrt{|\Omega|^{2}+\delta^{2}}
\end{aligned}
$$

EXAMPLE: LET $\delta=0, \Omega$ Real
APPLY LIGHT PULSE FOR TIME T, wHERE $\Omega T=\pi$

- called a " π pulse"

If $\mid \psi(0))=|1\rangle$, FiND $|\psi(T)\rangle$.

$$
\begin{aligned}
& C_{1}(T)=\cos (\Omega T / 2)=\cos (\pi / 2)=0 \\
& C_{2}(T)=-i \sin (\Omega T / 2)=-i \sin (\pi / 2)=-i \\
& \left.|\psi(T)\rangle=C_{2}(T) e^{-i \omega_{2} T}|2\rangle=-i e^{-i \omega_{2} T} / 2\right\rangle
\end{aligned}
$$

RABI OSCILLATION
EXCITATION PROBABILITY OSCILLATES

$$
\left|c_{2}(t)\right|^{2}=\frac{|\Omega|^{2}}{|\Omega|^{2}+\delta^{2}} \sin ^{2}\left(\frac{1}{2} \sqrt{|\Omega|^{2}+\delta^{2}} t\right)
$$

- MAX of $\left|C_{2}\right|^{2}$ is $\frac{|\Omega|^{2}}{|\Omega|^{2}+\delta^{2}}$

ON RESONANCE $(\delta=0)$:

$$
\left|c_{2}(t)\right|^{2}=\sin ^{2}\left(\left.\frac{1}{2} \right\rvert\, \Omega(t)\right.
$$

- MAX $\left|c_{2}\right|^{2}$ is 1
- "Rabi oscillation"
- ObSERVABLE WHEN $\gamma \approx 0$ (NEGLIGIBLE DAMPING)
- ie. Microwave transitions $\&$ NARROW OPTICAL TRANSITIONS
- BUILDING BLOCK OF ATOMIC CLOCKS 4 QUANTUM COMPUTERS
- Different from oscillation of dipole moment

$$
\text { PHY } 446 \text { SPRING } 2020
$$

LECTURE 11
2/24/2020

- bloch vector
- Precession

TwO-LEUEL ATOM \leftrightarrow SPIN $\frac{1}{2}$ IN B FIELD

(1),(2)
$(\uparrow\rangle, \mid \downarrow)$
TODAY: STUDY SPIN $\frac{1}{2}$ TO GET INTUITION WARM UP

SPIN $1 / 2 \quad|\psi\rangle=c_{1}|\uparrow\rangle+c_{2}|\downarrow\rangle$
SPIN VECTOR

$$
\vec{S}=\frac{\hbar}{2} \vec{\sigma} \quad ; \vec{\sigma}=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)
$$

FIND) $\left\langle\sigma_{x}\right\rangle,\left\langle\sigma_{y}\right\rangle,\left\langle\sigma_{z}\right\rangle$ IN TERM of c_{1}, c_{2}
Pauli matrices

$$
\begin{aligned}
& \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=|\uparrow\rangle\langle\downarrow|+|\downarrow\rangle\langle\uparrow| \\
& \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)=i[|\downarrow\rangle\langle\uparrow|-|\uparrow\rangle\langle\downarrow|] \\
& \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=|\uparrow\rangle\langle\uparrow|-|\downarrow\rangle\langle\downarrow|
\end{aligned}
$$

$$
\begin{aligned}
\left\langle\sigma_{x}\right\rangle & =\left(c_{1}^{*}, c_{2}^{*}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{c_{1}}{c_{2}}=\left(c_{1}^{x}, c_{2}^{x}\right)\binom{c_{2}}{c_{1}} \\
& =c_{1}^{x} c_{2}+c_{2}^{*} c_{1}=2 \operatorname{Re}\left(c_{1}^{*} c_{2}\right) \\
\left\langle\sigma_{y}\right\rangle & =\left(G_{1}^{*}, c_{2}^{x}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{c_{1}}{c_{2}}=i\left(c_{1}^{x}, c_{2}^{x}\right)\binom{-c_{2}}{c_{1}} \\
& =i\left(c_{2}^{x} c_{1}-c_{1}^{*} c_{2}\right)=2 \operatorname{Im}\left(c_{1}^{*} c_{2}\right) \\
\left\langle\sigma_{z}\right\rangle & =\left(c_{1}^{*}, c_{2}^{x}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{c_{1}}{c_{2}}=\left(c_{1}^{*}, c_{2}^{x}\right)\binom{G}{-c_{2}} \\
& =\left|c_{1}\right|^{2}-\left|c_{2}\right|^{2}
\end{aligned}
$$

NOTE: $\left(\sigma_{x}\right\rangle^{2}+\left(\sigma_{y}\right)^{2}+\left(\sigma_{z}\right)^{2}=1 \quad$ (l) - PROVE FOR AW

$$
\begin{aligned}
& \left(\operatorname{Re}\left(c_{1}^{x} c_{2}\right)^{2}+\operatorname{Im}\left(G_{1}^{x} c_{2}\right)^{2}=\left|c_{1}^{*} c_{2}\right|^{2}=\left|c_{1}\right|^{2}\left|c_{2}\right|^{2}\right) \\
& l=4\left|c_{1}+c_{2}\right|^{2}+\left(\left|a_{1}\right|^{2}-\left|\varepsilon_{1}\right|^{2}\right)^{2} \\
& =4\left|q_{1}\right|^{2}\left|c_{2}\right|^{2}+\left|c_{1}\right|^{4}+\left|c_{2}\right|^{4}-2\left|\varepsilon_{1}\right|^{2}\left|c_{2}\right|^{2} \\
& =\left|c_{1}\right|^{4}+\left|c_{2}\right|^{4}+2\left|c_{1}\right|^{2}\left|c_{2}\right|^{2} \\
& =\left(\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}\right)^{2}=1
\end{aligned}
$$

BLOCH Sphere
DEf:

$$
\begin{aligned}
& u=\left\langle\sigma_{x}\right\rangle=2 \operatorname{Re}\left(G^{*} \varepsilon_{z}\right) \\
& v=\left\langle\sigma_{y}\right\rangle=2 \operatorname{Im}\left(a^{*} \varepsilon\right) \\
& w=\left\langle\sigma_{z}\right\rangle=|G|^{2}-\left|\sigma_{z}\right|^{2}
\end{aligned}
$$

BLOCH VECTOR: $\vec{R}=(u, v, w)$

- classical vector (not operator)

NORM:

$$
\begin{aligned}
\vec{R} \cdot \vec{R} & =u^{2}+v^{2}+w^{2}=1 \\
(& \left.=\left\langle\sigma_{x}\right\rangle^{2}+\left\langle\sigma_{y}\right\rangle^{2}+\left\langle\sigma_{z}\right\rangle^{2}\right)
\end{aligned}
$$

BLOCH SPHERE
(UNIT SPHERE)

EX. LOCATE ON BLOCH SPHERE
a) $|\psi\rangle=|h\rangle: C_{1}=1, C_{2}=0$
$u=0 \approx v, w=1$
NORTH POLE
b)

$$
\begin{aligned}
& \text { b) }|\psi\rangle=|b\rangle: c_{1}=0, c_{2}=1 \\
& u=0=v ; w=-1 \text { SOUTH POLE } \\
& \text { c) }|\psi\rangle=\frac{1}{\sqrt{2}}(|p\rangle+|b\rangle): c_{1}=1 / \sqrt{2}=c_{2} \\
& u=1, v=0, w=0 \text {. uAXIS }
\end{aligned}
$$

EVERY $|\psi\rangle$ FOR SPIN $\frac{1}{2}$ MAPS TO A POINT ON BLOCH SPHERE

NOT FULLY UNIQUE: $|\psi\rangle$ AND $e^{i \alpha}|\psi\rangle$
MAP TO SAME POINT

$$
\left(\sigma_{x}\right\rangle^{\prime}=\langle\psi| e^{-i \alpha} \sigma_{x} e^{i \alpha}|\psi\rangle=\langle\psi| \sigma_{x}|\psi\rangle=\left\langle\sigma_{k}\right\rangle
$$

ETC.

THAT'S $|\psi\rangle \rightarrow \vec{R}$. NE $X T: \vec{R} \rightarrow|\psi\rangle$

$$
\begin{aligned}
(u, v, w) & \rightarrow \text { SPHERICAL COORDINATES } \\
u & =\sin \theta \cos \phi \\
v & =\sin \theta \sin \phi \\
w & =\cos \theta
\end{aligned}
$$

CAN CHECK: $\mid \psi)=e^{i \alpha}\left[\cos \left(\frac{\theta}{2}\right)(\uparrow)+e^{(\phi} \sin \left(\frac{(}{2}\right)|\psi\rangle\right]$

$$
\underline{I}_{\text {ARB. PHASE }}
$$

(HO)

$$
\begin{aligned}
& C_{1}^{*} C_{2}=\cos \frac{\theta}{2} \sin \frac{\theta}{2} e^{i \phi}=\frac{1}{2} \sin \theta e^{i \phi} \\
& u=2 \operatorname{Re}\left(G^{i} C_{2}\right)=\sin \theta \cos \phi \\
& v=2 \operatorname{Im}\left(q^{\phi} C_{2}\right)=\sin \theta \sin \phi \\
& w=C_{1} 1^{2}-\left|C_{2}\right|^{2}=\cos ^{2}\left(\frac{\theta}{2}\right)-\sin ^{2}\left(\frac{\theta}{2}\right) \\
& =\cos \left(\frac{\theta}{2}-\left(-\frac{\theta}{2}\right)\right)=\cos \theta
\end{aligned}
$$

TIME EVOLUTION
SPIN $\frac{1}{2}$ IN B FIELD

$$
H=-\vec{\mu} \cdot \vec{B}=\frac{2 \mu_{B}}{\hbar} \vec{S} \cdot \vec{B}=\mu_{B} \vec{\sigma} \cdot \vec{B}
$$

TDSE: $i \hbar \frac{\partial}{\partial t}|\psi\rangle=H|\psi\rangle$

$$
\Rightarrow i \hbar \frac{d}{d z}\binom{a_{1}}{c_{z}}=\mu_{B}(\underbrace{}_{\rightarrow \text { SHow Using }}\left(\begin{array}{cc}
B_{z} & B_{x}-i B_{y} \\
B_{x}+i B_{y} & B_{z}
\end{array}\right)\binom{a_{1}}{c_{z}}
$$

FIND $\frac{d}{d t} \vec{R}$, USE $\frac{d}{d t}\left\langle\sigma_{x}\right\rangle=\left\langle\frac{i}{\hbar}\left[H, \sigma_{x}\right]\right\rangle$

$$
\begin{aligned}
{\left[S_{x}, S_{y}\right] } & =i \hbar S_{z} \Rightarrow\left[\frac{\hbar}{2} \sigma_{x}, \frac{\hbar}{2} \sigma_{y}\right]=i \hbar \frac{\hbar}{2} \sigma_{z} \\
& \Rightarrow\left[\sigma_{x}, \sigma_{y}\right]=2 i \sigma_{z} \\
{\left[H, \sigma_{x}\right] } & =\mu_{B}\left[\sigma_{y} B_{x}+\sigma_{y} B_{y}+\sigma_{z} B_{z}, \sigma_{x}\right] \quad \lambda^{x} \jmath \\
& =2 i \mu_{B}\left(-\sigma_{z} B_{y}+\sigma_{y} B_{z}\right)=2 i \mu_{B}(\vec{\sigma} \times \vec{B})_{x}
\end{aligned}
$$

Similar for $\sigma_{y}, \sigma_{z}:\left[H, \sigma_{k}\right]=2 i \mu_{\beta}(\vec{\sigma} \times \vec{B})_{k}$

$$
\begin{aligned}
\frac{d}{d t}\langle\vec{\sigma}\rangle & =\left\langle-\frac{2 \mu_{B}}{\hbar} \vec{\sigma} \times \vec{B}\right\rangle \\
& =\frac{2 \mu_{B}}{\hbar} \vec{B} \times\langle\vec{\sigma}]=2 i \mu_{\beta}(\vec{\sigma} \times \vec{B})
\end{aligned}
$$

$$
\frac{d}{d t} \vec{R}=\frac{2 \mu_{2}}{\hbar} \vec{B} \times \vec{R}
$$

ORTHOGONAL TO \vec{R}
AND \vec{B}

- $\vec{R} \cdot \vec{R}$ is CONSTANT

BLOCH VECTOR PRECESSES ABOUT B

RABI OSCILLATION
Suppose $\vec{B}=\left(B_{x}, 0,0\right)$
AND $|\psi(0)\rangle=|\downarrow\rangle$

$$
\Rightarrow \quad \vec{R}(0)=(0,0,-1)
$$

(1)

Two-level atom
SCHRODINGER EQ:

$$
\left\{\begin{array}{l}
i \dot{c}_{1}=\Omega \cos (\omega t) e^{-i \omega_{0} t} c_{2} \\
i \dot{c}_{2}=\Omega^{*} \cos (\omega t) e^{i \omega_{0} t} c_{1}
\end{array}\right.
$$

ROTATING WAVE APPROX. (RNA):

$$
\begin{aligned}
& \left\{\begin{array}{l}
i c_{1} \approx \frac{\Omega}{2} e^{i \delta t} c_{2} \\
i \dot{c}_{2} \approx \frac{\Omega^{*}}{2} e^{-i \delta t} c_{1}
\end{array}\right. \\
& \delta \equiv \omega-\omega_{0}
\end{aligned}
$$

NEXT: SIMPLIFY USING CHANGE OF VARIABLES map onto bloch sphere model

PHY 446 SPRING 2020
LECTURE 12
2/26/2020

- Rotating frame Transformation
- bloch Vector precession

Two-level Atom

$$
\begin{array}{ll}
\left.2 \xlongequal{\hbar \omega_{0}}\right\}_{\text {nw }} & |\psi\rangle=C_{1} e^{-i \omega_{1} t}|1\rangle+C_{2} e^{-i \omega_{2} t}|2\rangle \\
\omega_{0}=\omega_{2}-\omega_{1}
\end{array}
$$

- Neglecting spont. Amis.

ROTATING WAVE APPROX. (RWA):

$$
\begin{aligned}
& \left\{\begin{array}{l}
i c_{1} \approx \frac{\Omega}{2} e^{i \delta t} c_{2} \\
i \dot{c}_{2} \approx \frac{\Omega^{*}}{2} e^{-i \delta t} c_{1}
\end{array}\right. \\
& \delta \equiv \omega-w_{0}
\end{aligned}
$$

eliminate time-dependence using "ROTATING FRAME TRANSFORMATION"

$$
\begin{aligned}
\widetilde{c}_{1} & =c_{1} e^{-i \delta t / 2} \\
\widetilde{c}_{2} & =c_{2} e^{i \delta t / 2} \\
\dot{\widetilde{c}}_{1} & =\dot{c}_{1} e^{-i \delta t / 2}-\frac{i \delta}{2} c_{1} e^{-i \delta t / 2} \\
& =-\frac{i \Omega}{2} e^{i \delta t / 2} c_{2}-i \frac{\delta}{2} \tilde{c_{1}}=-\frac{i \pi}{2} \tilde{c_{2}}-i \frac{\delta}{2} \widetilde{c_{1}} \\
\dot{c}_{2} & =i \dot{c}_{2} e^{i \delta t / 2}-c_{2} e^{i \delta t / 2} \frac{\delta}{2}=\frac{\Omega^{*}}{2} \tilde{G}-\frac{\delta}{2} \widetilde{c_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& P L U G I N:(R W A+R F T) \\
& \left\{\begin{array}{l}
i \dot{c_{1}}=\frac{1}{2}\left(\delta \widetilde{c_{1}}+\Omega \tilde{c_{2}}\right) \\
i \dot{c_{2}}=\frac{1}{2}\left(\Omega^{*} \tilde{G}-\delta \tilde{c_{2}}\right)
\end{array}\right.
\end{aligned}
$$

MATRIX FORM

$$
\begin{aligned}
& i \hbar \frac{d}{d t}\binom{\tilde{c}_{1}}{\tau_{2}}=\underbrace{\frac{\hbar}{2}\left(\begin{array}{cc}
\delta & \Omega \\
\Omega^{*} & -\delta
\end{array}\right)}_{H_{\text {eff }}}\binom{\tilde{c}_{1}}{\widetilde{c}_{2}} \\
& H_{\text {Eff }} \\
& =\frac{\hbar}{2}\left(\begin{array}{cc}
\delta & \Omega \\
\Omega^{\gamma} & -\delta
\end{array}\right)=\frac{\hbar}{2}\left[\Omega_{r} \sigma_{x} \sim \Omega_{i} \sigma_{y}+\delta \sigma_{z}\right] \\
& \quad=\frac{\hbar}{2}\left(\Omega_{r},-\Omega_{i}, \delta\right) \cdot \vec{\sigma} \equiv \frac{\hbar}{2} \vec{W} \cdot \vec{\sigma}
\end{aligned}
$$

RECALL: ELECTRON SPIN IN B FIELD

$$
\begin{aligned}
& H=-\vec{\mu} \cdot \vec{B}=\mu_{B} \vec{B} \cdot \vec{\sigma} \\
& \Rightarrow \frac{d}{\sqrt{t}}\langle\vec{\sigma}\rangle=\frac{2}{\hbar} \mu_{B} \vec{B} \times\langle\vec{\sigma}\rangle
\end{aligned}
$$

COMPONENTS $\vec{R}=\langle\vec{\sigma}\rangle=(u, v, w) ;|\psi\rangle=\binom{c_{1}}{c_{2}}$

$$
\left\{\begin{array}{l}
u=2 \operatorname{Re}\left(G_{1} \times c_{2}\right) \\
v=2 \operatorname{Im}\left(G_{1}^{*} c_{2}\right) \\
w={\left.c_{1}\right|^{2}-\left|c_{2}\right|^{2}}^{\text {and }}
\end{array}\right.
$$

PROTON IN BI FIELD

$$
\begin{aligned}
& H=-\vec{\mu} \cdot \vec{B}=-\mu_{p} \vec{B} \cdot \vec{\sigma} \\
& \Rightarrow \frac{d}{\sqrt{t}}\langle\vec{\sigma}\rangle=\frac{2}{\hbar} \mu_{p}\langle\vec{\sigma}\rangle \times \vec{B} \quad \text { (LHRULE!) }
\end{aligned}
$$

Two-Levelatom: Like ELECTRon

$$
\mu_{B} \vec{B} \leftrightarrow \frac{\hbar}{2} \vec{W}
$$

Historical sign convention: imitate proton
define bloch vector for 2-leugl atom

$$
\begin{aligned}
& \left\{\begin{array}{l}
u=2 \operatorname{Re}\left(\tilde{c}_{1} \cdot \widetilde{c}_{2}\right) \\
v=-2 \operatorname{Im}\left(\tilde{c}_{1}^{*} \tilde{c}_{2}\right) \leftarrow!G \mid U E S \text { LH. RULE } \\
w=\left|\tilde{c}_{1}\right|^{2}-\left|\tilde{c}_{2}\right|^{2}=|c|^{2}-\left|c_{1}\right|^{2} \\
\vec{R}=(u, v, w)
\end{array}\right.
\end{aligned}
$$

$$
\frac{d \vec{R}}{d t}=\vec{R} \times \vec{W} \quad(L H, R U L E)
$$

$O R:$ RH Rule about $-\vec{W}$

- TYPically Ω is Real: $\Omega_{r}=\Omega ; \Omega_{i}=0$

$$
\vec{w}=(\Omega, 0, \delta)
$$

- SOLVE FOR $\left|c_{1}\right|^{2},\left|c_{2}\right|^{2}$: USE $\left|a_{a}\right|^{2}+|\varepsilon|^{2}=1$

$$
\begin{aligned}
& w=2\left|c_{1}\right|^{2}-1=\left.|-2| c_{2}\right|^{2} \\
& \left|c_{1}\right|^{2}=\frac{1+w}{2} ;\left|c_{2}\right|^{2}=\frac{1-w}{2}
\end{aligned}
$$

PRECESSION: $\dot{\vec{R}}=\vec{R} \times \vec{W}$

ANGULAR UELOCICTY: $\alpha=\|\vec{W}\| t=\sqrt{\Omega^{2}+\delta^{2}} t$

Ex. $|\psi(0)\rangle=|1\rangle ; \quad \delta=0$
a) DRAW $\vec{R}(0), \vec{W}$ ON BLOCH SPHERE
b) DRAW $\vec{R}(t)$ PATH ON BLOCH SPHERE
c) FIND wet) ANS $\left|C_{2}(t)\right|^{2}$

L lower cask

- Hint: DRAW R(t) in vow PlANe
a, b)

$$
\begin{gathered}
t=0: \quad \vec{R}(0)=(0,0,1) \\
\vec{W}=(\Omega, 0,0)
\end{gathered}
$$

c)

$\binom{$ PROB. OSCILLATES }{ AT $\Omega}$

$$
\left.\begin{array}{rl}
w(t) & =\cos \alpha==\cos (\Omega t)] \\
{[v(t)} & =\sin (\Omega t)] \\
\left|c_{2}(t)\right|^{2} & =\frac{1-w}{2}=\frac{1-\cos (\Omega t)}{2}= \\
{[\cos (2 x)} & =\cos ^{2} x-\sin ^{2} x=1-2 \sin ^{2} x \\
\sin ^{2} x & =\frac{1}{2}(1-\cos 2 x)
\end{array}\right]
$$

$$
\left|c_{2}(t)\right|^{2}=\frac{1-w}{2}=\frac{1-\cos (\Omega t)}{2}=\sin ^{2}\left(\frac{\Omega t}{2}\right)
$$

$\pi / 2$ PULSE
FOR $\delta=0, \quad \alpha(t)=\Omega t$
LET $\Omega T=\pi / 2$
BLOCH VECTOR ROTATES BY $\alpha(\tau)=\pi / 2 \quad\left(90^{\circ}\right)$

true for any initial condition
EX

π Pulse

$$
\Omega T=\pi \Rightarrow \operatorname{ROTATLGN} \text { BY } \pi\left(180^{\circ}\right)
$$

ex.

Free precession

$$
\begin{aligned}
& \Omega=0 \\
& \delta \neq 0 \\
& \vec{W}=(0,0,8)
\end{aligned}
$$

ex. LET $\delta>0, \quad \vec{R}(t)=(1,0,0)$
a) DRAW $\vec{W}, \vec{R}(0), \vec{R}(t)$
b) FIND EQUATION FOR $\vec{R}(t)=(u(t), v(t), w(t))$
a)

b) lu -v PLANE:

$$
\begin{aligned}
& \alpha(t)=\|\vec{w}\| t=\delta t \\
& \left\{\begin{array}{l}
u(t)=\cos (\delta t) \\
v(t)=-\sin (\delta t) \\
w(t)=0
\end{array}\right.
\end{aligned}
$$

PHY 446 SPRING 2020
lecture 13
3/2/2020

- Spontaneous decay
- optical bloch equations

WARM - UP
BLOCH VECTOR $|\psi(0)\rangle=|2\rangle$
STRONG $\pi / 2$ PULSE: $\Omega \gg \delta \quad(\Omega>0,8>0)$

$$
\Omega T=\pi / 2
$$

a) FIND \& DRAW $\vec{R}(0)$
b) DRAW $\vec{W}=(\Omega, 0, \delta)$ FOR $\Omega \gg \delta$ LIMIT
c) FIND $4 D R A W \quad \vec{R}(T) \quad U S I N G=\frac{d \vec{R}}{d t}=-\vec{W} \times \vec{R}$

$$
\vec{R}(0)=(0,0,-1)
$$

$$
\vec{R}(T)=(-1,0,0)
$$

Two-LEVEL ATOM

$$
\left.|\psi(t)\rangle=c_{1}(t) e^{-i \omega_{1} t}|1\rangle+c_{2}(t) e^{-i \omega_{2} t} / 2\right\rangle
$$

Rotating frame Transformation

$$
\begin{aligned}
& \widetilde{c}_{1}(t)=c_{1} e^{-i \delta t / 2} \\
& \widetilde{c}_{2}(t)=c_{2} e^{i \delta t / 2}
\end{aligned}
$$

BLOCH VECTOR

$$
\begin{aligned}
& \left\{\begin{array}{l}
u=2 \operatorname{Re}\left[\tilde{c}_{1}^{x} \tilde{c}_{2}\right]=\widetilde{c}_{1} \widetilde{c}_{2}^{\phi}+\widetilde{c}_{2} \widetilde{c}_{1}^{x} \\
v=-2 \operatorname{Im}\left[\widetilde{c}_{1} \phi \widetilde{c}_{2}\right]=-i\left(\widetilde{c}_{1} \widetilde{c}_{2}^{x}-\widetilde{c}_{2} \widetilde{c}^{x}\right) \\
\omega=\left|\tilde{c}_{1}\right|^{2}-\left|\tilde{c}_{2}\right|^{2}=\widetilde{c}_{1} \tilde{c}_{1}^{x}-\widetilde{c}_{2} \widetilde{c}_{2}^{x}
\end{array}\right. \\
& \vec{R}=(u, v, w)
\end{aligned}
$$

EQN. OF MOTION:

$$
\left\{\begin{aligned}
d \vec{t} \vec{R} & =-\vec{W} \times \vec{R}=\vec{R} \times \vec{W} \\
\vec{W} & =(s 2,0, \delta)
\end{aligned}\right.
$$

COMPONENTS:

$$
\left(\begin{array}{l}
\dot{u} \\
\dot{v} \\
\dot{w}
\end{array}\right)=\left|\begin{array}{lll}
\dot{w} & \hat{v} & \hat{w} \\
u & v & w \\
\Omega & 0 & \delta
\end{array}\right|=\left(\begin{array}{l}
\delta v \\
-\delta u+\Omega w \\
-\Omega v
\end{array}\right)
$$

SPONTANEOUS DECAY

WUFN COLLAPSE $|\psi\rangle \rightarrow|1\rangle$

- not included in mdse
- emitted photon detectable
consider many atoms; some have decayed

$$
\left(\begin{array}{ccc}
0 & i\rangle & 0|\psi\rangle \\
|(1\rangle\rangle & |\dot{\psi}\rangle & .|1\rangle
\end{array}\right)^{\pi M E} \Rightarrow\left(\begin{array}{ccc}
0 & \left.i \psi^{(2)}\right\rangle & \left.0 \mid \psi^{(3)}\right) \\
\cdot\left|\psi^{(4)}\right\rangle & \left.i \psi^{(s)}\right) & \cdot\left|\psi^{(0)}\right\rangle
\end{array}\right)
$$

ENSEMBLE AUG BLOCH VECTOR

$$
\begin{aligned}
& \underset{\text { ensemble }}{\left\langle\widetilde{C}_{i} \widetilde{\tilde{j}}^{*}\right\rangle_{e}}=\sum_{k=1}^{N} \underbrace{\widetilde{C}_{i}^{(k)} \tilde{c}_{j}^{(h) x}} \frac{1}{N} \\
& \text { and. } \\
& \equiv \tilde{\rho}_{i j} \leqslant \text { Rotating frame } \\
& \left\{\begin{aligned}
u & =\left\langle\tilde{c}_{1} \tilde{c}_{2}^{*}\right\rangle_{e}+\left\langle\tilde{c}_{2} \tilde{c}_{1}^{*}\right\rangle_{e}=\tilde{\rho}_{12}+\widetilde{\rho}_{21} \\
& =-i\left(\tilde{\rho}_{12}-\widetilde{\rho}_{2}\right)
\end{aligned}\right. \\
& \left\{\begin{array}{l}
v=-i\left(\tilde{\rho}_{12}-\tilde{\rho}_{21}\right) \\
w=\tilde{\rho}-\tilde{\rho}
\end{array}\right. \\
& \vec{R}=(u, v, w)
\end{aligned}
$$

DENSITY MATRIX $\tilde{\rho}=\left(\begin{array}{cc}\widetilde{\rho}_{11} & \widetilde{\rho}_{21} \\ \tilde{\rho}_{21} & \widetilde{\rho}_{22}\end{array}\right)$

EXCITED STATE FRACTION

$$
P_{2}=\left\langle\widetilde{c}_{2} \widetilde{c}_{2}^{x}\right\rangle_{e}=\tilde{P}_{22}
$$

GROUND STATE FRACTION

$$
P_{1}=\left\langle\tilde{c}_{1} \tilde{c}_{1}^{*}\right\rangle_{e}=\widetilde{P}_{11}
$$

$$
\begin{aligned}
\frac{\text { TOTAL } P_{\text {ROB. }}}{P_{1}+P_{2}=\widetilde{P}_{11}}+\widetilde{P_{22}} & =\sum_{k=1}^{N} \frac{1}{N}(\underbrace{\left|\tilde{c}_{1}^{(k)}\right|^{2}+\left|\tilde{c}_{2}^{(k)}\right|^{2}}_{1}) \\
& =1
\end{aligned}
$$

NOTE: $\operatorname{Tr}(\tilde{\rho})=\tilde{\rho}_{11}+\tilde{\rho}_{2_{2}}=1$ (NORMALIZED)

$$
\begin{aligned}
& W=\tilde{\rho}_{11}-\tilde{\rho}_{22}=1-2 \tilde{\rho}_{22}=2 \tilde{\rho}_{11}-1 \\
& \Rightarrow \widetilde{\rho}_{11}=\frac{1+w}{2} ; \tilde{\rho}_{22}=\frac{1+w}{2}
\end{aligned}
$$

PROBABILITY INTERPRETATION
ENSEMBLE \rightarrow POSSIBLE STATES OF ONE ATOM (decay happens at random times) $\tilde{p}_{i j}=E X P E C T E D$ VALUE OF $\tilde{C}_{i}{\tilde{C_{j}}}_{j}^{*}=\left\langle\tilde{C}_{i} \tilde{C}_{j}^{*}\right\rangle_{c}$

EQN. OF MOTION FOR AUG. BLOCH VECTOR:
OPTICAL BLOCH EQNS

$$
\left\{\begin{array}{l}
\dot{w}=-\delta v-\frac{r}{2} u \\
\dot{v}=-\delta u+\Omega w-\frac{r}{2} v \\
\dot{w}=-\Omega v-r(w-1)
\end{array}\right.
$$

DAMPED RABI OSCILLATION

$$
\begin{gathered}
E x . \delta=0, \Gamma \ll \Omega, \quad R(0)=(0,0,1) \\
\dot{u}=-\frac{r}{2} u \quad \Rightarrow u=0 \\
\dot{v}=\Omega w-\frac{r}{2} v \\
\dot{w}=-\Omega v-\Gamma(w-1)
\end{gathered}
$$

damped circular motion in view plane

EXCITED STATE FRACTION $\tilde{\rho}_{22}=\frac{1-w}{2}$

$\operatorname{STEADY} \operatorname{STATE}(\dot{u}=0, \dot{v}=0, \dot{w}=0)$

$$
\rho_{22} \rightarrow \frac{1}{2} \frac{\Omega^{2}}{\Omega^{2}+\Gamma^{2} / 2} \xrightarrow{\Omega \gg \Gamma} \frac{1}{2} \quad(\delta=0)
$$

Approx. SOLUTION IN $\Gamma \ll \Omega$ limit:

$$
\begin{aligned}
& w \approx e^{-\frac{3}{4} \sqrt{t}} \cos (\Omega t) \\
& V \approx e^{-\frac{3}{4} t} \sin (\Omega t) \\
& \rho_{22}=\frac{1-w}{2} \approx \frac{1}{2}\left(1-e^{-\frac{3}{4} \sqrt{4}} \cos (\Omega t)\right)
\end{aligned}
$$

$\delta=0$ PICTURE:

- $\rho_{22}^{(S S)} \leq \frac{1}{2}$ (MORE Downward processes than up)
- $\rho_{22}^{(5 S)} \rightarrow \frac{1}{2}$ AS $\frac{\Omega}{r} \rightarrow \infty$ (DECAY RATE BECOMES NEGLIGIBLE)

General Steady state Solution

$$
\begin{aligned}
& 0=\dot{u}=\dot{v}=\dot{w} \text { GluEs: } \\
& \left(\begin{array}{l}
u \\
v \\
w
\end{array}\right)_{\text {s.s. }}=\frac{1}{\delta^{2}+\frac{\Omega^{2}}{2}+\frac{r^{2}}{4}}\left(\begin{array}{l}
s 2 \delta \\
\Omega \Gamma / 2 \\
\delta^{2}+\Gamma^{2} / 4
\end{array}\right)
\end{aligned}
$$

EXCITED STATE PROB.

$$
\begin{aligned}
\rho_{22}^{(s)} & =\frac{1-W_{\rho s}}{2}=\frac{\Omega^{2} / 4}{\delta^{2}+\Omega^{2} / 2+\Gamma^{2} / 4} \\
& =\frac{\Omega^{2} / \Gamma^{2}}{1+2 \Omega^{2} / r^{2}+(2 \delta / r)^{2}} \\
& \equiv \frac{1}{2} \frac{S}{1+S+\left(\frac{\delta}{r / 2}\right)^{2}} \\
S & \equiv 2 \Omega^{2} / \Gamma^{2} \text { SATURATION PARAMETER" }
\end{aligned}
$$

RATE OF PHOTON SCATTERING

$$
R_{s c}=\Gamma \rho_{22}^{(s s)}=\frac{\Gamma}{2} \frac{s}{1+s+\left(\frac{\delta}{r / 2}\right)^{2}}
$$

EXTRA STUFF:

$$
\begin{aligned}
& R(0)=(0,0,1) ; \delta=0 \\
& \dot{u}=-\frac{r}{2} u \quad \Rightarrow u=0 \\
& \left\{\begin{array}{l}
\dot{v}=\Omega w-\frac{r}{2} v \\
\dot{w}=-\Omega v
\end{array}\right. \\
& \dot{w}=-\Omega v-\Gamma(w-1) \\
& \ddot{w}=-\Omega \dot{v}-\Gamma \dot{w}=-\Omega\left(\Omega w-\frac{\Gamma}{2} v\right)+\Gamma(\Omega v+\Gamma(w-1)) \\
& =-\Omega^{2} w+\underbrace{\frac{1}{2} \Omega \Gamma v+\Gamma \Omega v}_{3 / 2 \Omega \Gamma v}+\Gamma^{2}(w-1) \\
& \Omega v=-\dot{w}-\Gamma(w-1) \\
& \ddot{\omega}=-\Omega^{2} w-\frac{3}{2} \Gamma(\dot{w}+\Gamma(w-1))+\Gamma^{2}(w-1) \\
& =-\Omega^{2} w-\frac{3}{2} \Gamma \dot{w}-\frac{2}{2} \Gamma^{2}(w-1)+\frac{2}{2} \Gamma^{2}(w-1) \\
& =-\Omega^{2} w-\frac{3}{2} \Gamma \dot{w}-\frac{1}{2} \Gamma^{2}(w-1) \\
& =-\left(\Omega^{2}+\Gamma^{2} / 2\right) w-\frac{3}{2} \Gamma \dot{w}+\Gamma^{2} / 2 \\
& \ddot{W}+\frac{3}{2} \Gamma \dot{w}+\left(\Omega^{2}+\Gamma^{2} / 2\right) w=\Gamma^{2} / 2
\end{aligned}
$$

Particular: steady state $w_{p}=$ cons

$$
\left(\Omega^{2}+\Gamma^{2} / 2\right) w_{p}=\Gamma^{2} / 2 \Rightarrow w_{p}=\frac{\Gamma^{2} / 2}{\Omega^{2}+\Gamma^{2} / 2}
$$

Homogeneous: $w=e^{\lambda t}$

$$
\begin{aligned}
\lambda^{2}+\frac{3}{2} \Gamma \lambda+\left(\Omega^{2}+\Gamma^{2} / 2\right)=0 & \frac{1 / 4}{\lambda} \\
\lambda & =\frac{-\frac{3}{2} \Gamma \pm \sqrt{\left(\frac{3}{2}\right)^{2}-4\left(\Omega^{2}+\Gamma^{2} / 2\right)}}{2}\left(\frac{8}{4}\right) \Gamma^{2} \\
& =-\frac{3}{4} \Gamma \pm \frac{i}{2} \sqrt{4 \Omega^{2}-\frac{1}{4} \Gamma^{2}}=-\frac{3}{4} \Gamma \pm i \sqrt{\Omega^{2}-\Gamma^{2} / 16}
\end{aligned}
$$

$$
\begin{aligned}
& \text { FOR } W(0)=1 ; \dot{\omega}(0)=-\Omega v(0)-\Gamma(\omega(0)-1)=0 \\
& \omega(t)=\omega_{s s}+e^{-\frac{3}{4} \Gamma t}\left(A \operatorname { c o s } \left[\frac{\left.\left.\sqrt{\Omega^{2}-\Gamma^{2} / 10} t\right]+B \sin \left(\sqrt{\Omega^{2}-r^{2} / 16} t\right]\right)}{\alpha}\right.\right. \\
& l=w(0)=w_{s s}+A \Rightarrow A=1-w_{s s}=\frac{\Omega^{2}}{\Omega^{2}+r^{2 / 2}} \\
& \dot{w}=-\frac{3}{4} \Gamma e^{-\frac{3}{4} \Gamma t}(A \cos \alpha t+B \sin \alpha t) \\
& +e^{-3 / 4 \Gamma t}(-\alpha A \sin \alpha t+\alpha \beta \cos \alpha t) \\
& 0=\dot{\omega}(0)=-\frac{3}{4} \Gamma A+\alpha \beta \Rightarrow \alpha \beta=\frac{3}{4} \Gamma A \\
& B=\frac{3}{4} \int \frac{A}{\alpha}
\end{aligned}
$$

FOR $\Omega \gg \Gamma, \omega \approx e^{-\frac{3}{4} \Gamma t} \cos (\Omega t)$

$$
\begin{aligned}
& \rho_{22}=\frac{1-\omega}{2}=\frac{1}{2}\left(1-e^{-\frac{3}{4} \Gamma t} \cos (\Omega t)\right) \\
& V \approx \frac{-1}{\Omega} \dot{\omega} \approx e^{-\frac{3 r}{4} t} \sin (\Omega t)
\end{aligned}
$$

SPONTANEOUS DECAY (HEURISTIC DERIVATION)

SUPPOSE $\Omega=0=8$
Average effect: (ensemble avg.)

$$
\begin{aligned}
& \left|\widetilde{c}_{2}\right|^{2} \sim e^{-r t} \\
& \widetilde{c}_{2} \sim e^{-r t / 2} \\
& u=2 \operatorname{Re}\left[\widetilde{c}^{2} \tilde{c}_{2}\right] \sim e^{-r t / 2} \\
& \Rightarrow \dot{u}=-\frac{1}{2} \Gamma u \\
& v=-2 I_{m}\left[\widetilde{c}_{1}^{*} \tilde{c_{2}}\right] \sim e^{-r t / 2} \\
& \rightarrow \dot{v}=-\frac{1}{2} \Gamma v \\
& \left|c_{2}\right|^{2}=\frac{l-w}{2} \\
& w-1=-2\left|c_{2}\right|^{2} \sim e^{-r t} \\
& \dot{w}=\frac{d}{c t}(w-1) \sim-\Gamma(w-1)
\end{aligned}
$$

Pure Spent. Amis:

$$
\begin{aligned}
& \Rightarrow\left\{\begin{array}{l}
\dot{u}=-\frac{r}{2} u \\
\dot{y}=-\frac{r}{2} v \\
\dot{w}=-r(w-1)
\end{array}\right. \\
& \frac{d}{d t}\left(a^{2}+v^{2}+w^{2}\right)=2 u \dot{u}+2 v \dot{v}+2 w \dot{w} \\
& =-\Gamma u^{2}-\Gamma v^{2}-2 \Gamma\left(\omega^{2}-\omega\right) \\
& =-\Gamma-\Gamma \omega^{2}+2 \Gamma \omega=-\Gamma\left(1+\omega^{2}-2 w\right) \\
& =-\Gamma(w-L)^{2} \\
& u^{2}=\left(\tilde{\rho}_{12}+\tilde{p}_{21}\right)^{2}={\widetilde{\rho_{12}}}^{2}+2 \tilde{12}_{1_{21}} \tilde{p}_{21}+\tilde{P}_{21}^{2} \\
& v^{2}=-\left(\tilde{\tilde{p}_{2}}-\tilde{\tilde{P}_{21}}\right)^{2}=-\tilde{p}_{12}^{2}+2 \vec{F}_{12} \vec{F}_{21}-\tilde{P}_{21}^{2} \\
& w^{2}=\left(\tilde{\rho}_{11}-\tilde{\rho}_{22}\right)^{2}
\end{aligned}
$$

DENSITY MATRIX
COMBINE CLASSICAL \& QUANTUM PROBABILITY

POSSIBLE WAUEFUNCTIONS: $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle, \ldots\left|\psi_{k}\right\rangle, \ldots$
Probabilities : $\quad P_{1}, P_{2}, \ldots, P_{n}, \ldots$
ExPECTATION vALUES:

$$
\begin{aligned}
\langle A\rangle & =\sum_{k} P_{k}\left\langle\psi_{k}\right| A\left|\psi_{k}\right\rangle \\
& \left.=\sum_{n, k} P_{k}\left\langle\psi_{k}\right| A|n\rangle\langle n| \psi_{k}\right) \quad(n=1,2) \\
& =\sum_{n}\langle n| \underbrace{\sum_{n} P_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right| A|n\rangle}_{n} \\
& =\sum_{n}\langle n| \rho A|n\rangle=\operatorname{Tr}_{r}(\rho A) \\
& =\sum_{k} P_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right| \\
& \equiv\left(\begin{array}{ll}
\rho_{11} & \rho_{12} \\
\rho_{21} & \rho_{22}
\end{array}\right) \quad \rightarrow \operatorname{FOUR}^{2} \rho_{15}
\end{aligned}
$$

pure state:
KNown WUFN 14\rangle

$$
\rho=|\psi\rangle\langle\psi|
$$

LET $|\psi\rangle=c_{1}|1\rangle+c_{2}|2\rangle$
CALCULATE ρ MATRIX

$$
\begin{aligned}
& |\psi\rangle=\binom{c_{1}}{c_{2}} ;\langle\psi|=\left(c_{1}^{*}, c_{2}^{*}\right) \\
& \rho=\binom{c_{1}}{c_{2}}\left(c_{1}^{*}, c_{2}^{*}\right)=\left(\begin{array}{ll}
c_{1} c_{1}^{*} & c_{1} c_{2}^{*} \\
c_{2} c_{1}^{*} & c_{2} c_{2}^{*}
\end{array}\right)
\end{aligned}
$$

Rotating Frame (pure state)

$$
\tilde{\rho}=\left(\begin{array}{ll}
\widetilde{c}_{1} \tilde{c}_{1}^{x} & \widetilde{c}_{c_{c}} \widetilde{c}_{2}^{*} \\
\widetilde{c}_{2} \widetilde{c}_{i}^{\phi} & \widetilde{c}_{2} \widetilde{c}_{2}^{x}
\end{array}\right)=\left(\begin{array}{cc}
\left|c_{1}\right|^{2} & e^{-i \delta t} c_{1} c_{2}^{x} \\
e^{i \delta t} c_{1} c_{2}^{*} & \left|c_{2}\right|^{2}
\end{array}\right)
$$

general: "Mixed state" (not pure) UPGRADE $\quad c_{i} c_{j}^{x} \rightarrow \rho_{i j}$

$$
\tilde{\rho}=\left(\begin{array}{cc}
\tilde{\rho}_{11} & \tilde{\rho}_{12} \\
\tilde{\rho}_{21} & \tilde{\rho}_{22}
\end{array}\right)=\left(\begin{array}{ll}
\rho_{11} & e^{-i \delta t} \rho_{12} \\
\rho_{21} e^{i \delta t} & \rho_{22}
\end{array}\right)
$$

PHY 446 SPRING 2020
LECTURE 14
$3 / 4 / 2020$

- steady-state sola. to obey.
- Saturation

WARM-UP: 2 -LEVEL ATOM AT $t=0$ 50% CHANCE OF $\binom{\tilde{c}_{1}}{\tilde{\tau}_{2}}=\binom{1 / \sqrt{2}}{1 / \sqrt{2}}$
50% CHANCE OF $\quad\binom{\tilde{c}_{1}}{\tau_{2}}=\binom{1 / \sqrt{2}}{i 1 / \sqrt{2}}$
a) FIND DENSITY MATRIX $\tilde{\rho}(t+0)$
b) FIND AVG. BLOCM VECTOR $\vec{R}(0)$
c) IF $\Omega=0, \delta=0, \Gamma \neq 0$, FIND $\vec{R}(t)$ EXPRESSION
d) SKETCH $R(t)$; SHOW $R(0) \& R(t \rightarrow \infty)$
a)

$$
\begin{aligned}
& \widetilde{\rho}_{11}=\left\langle\tilde{c}_{G_{1}}^{*}\right\rangle=0.5 \frac{1}{2}+0.5 \frac{1}{2}=\frac{1}{2} \\
& \widetilde{\rho}_{22}=\left\langle\widetilde{c}_{2} \tilde{c}_{2}^{*}\right\rangle=0.5 \frac{1}{2}+0.5 \frac{1}{2}=\frac{1}{2} \\
& \widetilde{\rho}_{12}=\left\langle\tilde{c}_{1} \widetilde{c}_{2}^{*}\right\rangle=0.5 \frac{1}{2}-i 0.5 \frac{1}{2}=\frac{1}{4}(1-i) \\
& \widetilde{\rho}_{21}=\left\langle\tilde{c}_{2} \tilde{c}_{1}^{*}\right\rangle=0.5 \frac{1}{2}+i 0.5 \frac{1}{2}=\frac{1}{4}(1+i)
\end{aligned}
$$

b)

$$
\begin{aligned}
& u=\widetilde{\rho}_{12}+\widetilde{P}_{21}=\frac{1}{2} \\
& v=2 \operatorname{Im}\left(\widetilde{P}_{12}\right)=-i\left(\widetilde{P}_{12}-\tilde{P}_{21}\right)=-i(-i / 2)=-\frac{1}{2} \\
& w=\widetilde{P}_{11}-\widetilde{P}_{22}=0 \\
& \vec{R}(0)=(1 / 2,-1 / 2,0)
\end{aligned}
$$

C)

$$
\begin{aligned}
& \text { aBE } \quad(\Omega=0=\delta) \\
& \left\{\begin{array}{l}
\dot{u}=-\frac{5}{2} u \\
\dot{v}=-\frac{5}{2} v \\
\dot{w}=-\Gamma(w-1)
\end{array}\right. \\
& u(t)=u(0) e^{-\Gamma t / 2}=\frac{1}{2} e^{-\Gamma t / 2} \\
& V(t)=V(0) e^{-r t / 2}=-\frac{1}{2} e^{-\Gamma t / 2} \\
& \begin{aligned}
& W(t)= 1+A e^{-\Gamma t}= \\
& c_{\text {Particular }} \quad 1-e^{-\Gamma t} \\
& W(0)=0 \sqrt{ }
\end{aligned}
\end{aligned}
$$

d)

$$
\begin{aligned}
& R(0)=\left(\frac{1}{2},-\frac{1}{2}, 0\right) \\
& R(t \rightarrow \infty)=(0,0,1)
\end{aligned}
$$

$$
\begin{aligned}
& u^{2}+v^{2}=\frac{1}{4} e^{-r t} \times 2=\frac{1}{2} e^{-r t} \\
& w=1-2\left(u^{2}+v^{2}\right) \equiv 1-2 r^{2}
\end{aligned}
$$

Note: could find the separate bloch vectors

$$
\begin{aligned}
& \binom{\widetilde{C}_{1}}{\widetilde{C}_{2}}=\binom{1 / \sqrt{2}}{1 / \sqrt{2}} \rightarrow \vec{R}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
& \binom{\widetilde{C}_{1}}{\widetilde{C_{2}}}=\binom{1 / \sqrt{2}}{1 / \sqrt{2}} \rightarrow \vec{R}=\left(\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right)
\end{aligned}
$$

OPTICAL BLOCH EQNS

$$
\begin{aligned}
& \dot{u}=-\delta v-\frac{\Gamma}{2} u \\
& \dot{v}=-\delta u+\Omega w-\frac{r}{2} v \\
& \dot{w}=-\Omega v-\Gamma(w-1)
\end{aligned}
$$

General Steady state solution

$$
\begin{aligned}
& 0=\dot{u}=\dot{v}=\dot{w} \text { GluEs: } \\
& \left(\begin{array}{l}
u \\
v \\
w
\end{array}\right)_{\text {sss. }}=\frac{1}{\delta^{2}+\frac{\Omega^{2}}{2}+\frac{r^{2}}{4}}\left(\begin{array}{c}
s 2 \delta \\
\Omega r / 2 \\
\delta^{2}+\Gamma^{2} / 4
\end{array}\right)
\end{aligned}
$$

EXCITED STATE PROB.

$$
\begin{aligned}
& \rho_{22}^{(s s)}=\frac{1-w_{s s}}{2}=\frac{\Omega^{2} / 4}{\delta^{2}+\Omega^{2} / 2+\Gamma^{2} / 4} \\
&=\frac{\Omega^{2} / \Gamma^{2}}{1+2 \Omega^{2} / \Gamma^{2}+(2 \delta / \Gamma)^{2}} \\
&=\frac{1}{2} \frac{S}{1+S+\left(\frac{\delta}{\Gamma / 2}\right)^{2}} \\
& S \equiv 2 \Omega^{2} / \Gamma^{2} \quad \text { SATURATION PARAMETER } \\
& \rho_{22}^{(s s)} \uparrow
\end{aligned}
$$

SATURATION INTENSITY
$\Omega^{2} \propto I$, So $s=I / I_{\text {SAT }}$
For some "Saturation intensity" Isat
WHAT is $I_{S_{A T}}$?

$$
I_{S A T}=I / S=\frac{\Gamma^{2} I}{2 \Omega^{2}}
$$

RELATE Ω^{2} To I:

$$
\begin{aligned}
& \vec{E}(t)=E_{0} \tilde{x} \cos (\omega t) \\
& \Omega^{2}=\frac{e^{2}\left|X_{12}\right|^{2} E_{0}^{2}}{\hbar^{2}}
\end{aligned}
$$

WHERE $\quad X_{12}=\langle 1| x|2\rangle$

$$
\begin{aligned}
I & =\left\langle\varepsilon_{0} c \vec{E}^{2}\right\rangle=\frac{1}{2} \varepsilon c E_{0}^{2} \\
E_{0}^{2} & =\frac{2 I}{\varepsilon_{0} c} \\
\Omega^{2} & =\frac{e^{2}\left|x_{12}\right|^{2}}{\hbar^{2}} \frac{2 I}{\varepsilon_{0} c} \rightarrow \frac{I}{\Omega^{2}}=\frac{\hbar^{2} \varepsilon_{0} c}{2 e^{2}\left|x_{12}\right|^{2}} \\
I_{\text {SAT }} & =\frac{\Gamma^{2} \hbar^{2} \varepsilon_{0} c}{4 e^{2}\left|x_{12}\right|^{2}}
\end{aligned}
$$

ABSORPTION

RATE OF PHOTON SCATTERINE (per atom)

$$
\frac{R_{S C}}{N}=\Gamma \rho_{22}^{(S S)}=\frac{\Gamma}{2} \frac{I / I_{S A T}}{1+S+\left(\frac{\delta}{\Gamma / 2}\right)^{2}}
$$

THIN SLICE:
I

$$
\begin{aligned}
-\Delta I & =\frac{P_{s c}}{A}=\frac{\hbar \omega R_{s c}}{A}=\frac{\hbar \omega \Gamma N \rho_{22}}{A} \\
& =\hbar \omega \Gamma \Gamma_{a \rho_{22}} \Delta z
\end{aligned}
$$

$$
\frac{d I}{d z}=-\frac{\hbar \omega \Gamma n_{a}}{2 I_{S A T}} \frac{1}{1+s+\left(\frac{s}{\Gamma / 2}\right)^{2}} I \equiv-a I
$$

Absorption Coff.
DEPENDS ON I
(Foot USES K)

$$
[a]=\operatorname{LENGTH}^{-1}
$$

$$
\text { PHY } 446 \text { SPRING } 2020
$$

LECTURE 15

- Absorption, saturation, a Power broadening
- Scattering force

Two-Level atom

Steady-State excitation prob.

$$
\begin{aligned}
& \rho_{22}^{(s s)}=\frac{1}{2} \frac{s}{\left(+S+\left(\frac{28}{r}\right)^{2}\right.} \\
& S=I / I_{S A T}=2 \Omega^{2} / \Gamma \\
& \text { SATURATION INTENSITY }
\end{aligned}
$$

EXERCISE:

$$
\begin{aligned}
& \delta / \Gamma=1, S=\frac{1}{2} \cdot \text { FIND } \rho_{22}^{(s)} . \\
& \rho_{22}^{(5 s)}=\frac{1}{2} \quad \frac{1 / 2}{1+\frac{1}{2}+2^{2}}=\frac{1}{4} \frac{1}{5.5}=0.045
\end{aligned}
$$

LAST TIME:
PHOTON SCATTERING RATE PER ATOM

$$
\Gamma \rho_{22}
$$

\rightarrow ABSORPTION COEFF.

ABSORPTION

$$
\begin{aligned}
& \frac{d I}{d z}=-a I \\
& a \approx \underbrace{\frac{\hbar \omega_{0} \Gamma n_{a}}{2 I_{S A T}}}_{a_{0}} \frac{1}{1+S+\left(\frac{2 \delta}{r}\right)^{2}} \equiv \frac{a_{0}}{\left(+S+\left(\frac{2 \delta}{r}\right)^{2}\right.}
\end{aligned}
$$

LORENTZIAN FORM
GENERAL LORENTZIAN: $f(x)=\frac{f_{0}}{1+\left(\frac{x}{2 / 2}\right)^{2}}$

$$
f_{0}=\operatorname{MAXIMUM}, \quad r=\text { FLAM }
$$

ABSORPTION COFF: $\quad a=\frac{a_{0} /(1+S)}{1+\left[\frac{2 \delta}{\Gamma \sqrt{1+s}}\right]^{2}}$
MAXIMUM: $\frac{a_{0}}{1+S}$

- decreases with s "saturation"

FWHM: Г $\sqrt{1+s}$

- Increases with $S \Rightarrow$ "Power Broadening"

EXERCISE: FOR $S=1$, FIND
a) MAX $=a_{0} /(1+s)=\frac{1}{2} a_{0}$
b) $\operatorname{FwHM}(\delta)=\Gamma \sqrt{1+s}=\Gamma \sqrt{2}$

PLOT: ABSORPTION vs. δ

SIMPLE FORMULA FOR a_{0}
so fAR, $\quad a_{0}=\frac{\hbar \omega_{0} \Gamma n_{a}}{2 I_{S_{A T}}}$
FOR LIGHT wi polarization $\hat{\varepsilon}$:

$$
\frac{I_{S A T}}{\Gamma}=\frac{\hbar^{2} \Gamma \varepsilon_{0} c}{4\left|d_{12}\right|^{2}} ; \quad d_{12}=\langle 1| \hat{\varepsilon} \cdot \vec{d}|2\rangle
$$

GOOD NEWS: Γ is RELATED To $\left|d_{12}\right|^{2}$ For a Two-level Atom,

$$
\frac{\Gamma}{\left|d_{12}\right|^{2}}=\frac{\omega_{0}^{3}}{3 \pi \varepsilon_{0} \hbar c^{3}}
$$

- from quantum Theory of light (we've been treating light as a classical field)

COMBINE:

$$
\begin{aligned}
a_{0} & =\frac{\hbar{\omega_{0}}_{0}}{2}\left(\frac{4}{\hbar^{2} \varepsilon_{0} c}\right) \frac{3 \pi \varepsilon_{0} \hbar c^{3}}{\omega_{0}^{3}} \\
& =6 \pi n_{a}\left(\frac{c}{\omega_{0}}\right)^{2}=6 \pi n_{a} / k_{0}^{2}
\end{aligned}
$$

TWO-LEVEL ATOM ABSORPTION COEFFICIENT

$$
a=\frac{6 \pi n_{a} / k_{0}^{2}}{1+S+(2 \delta / \Gamma)^{2}}
$$

COMPARE TO
LORENTZ OSCILLATOR RESULT ($|\delta| \ll \omega_{0}$)

$$
\begin{aligned}
& a= 2 n_{i} k_{0} \approx \frac{\omega_{0}}{c} \operatorname{Im} x \\
& \alpha \approx \frac{\omega_{0}}{c} \frac{n_{a}}{\varepsilon_{0}} \operatorname{Im} \alpha \\
&\left.a \approx \frac{\delta-i \Gamma / \alpha}{\delta^{2}+(\Gamma / 2)^{2}}\right) \\
& 2 m \omega_{0} \frac{e^{2}}{c} \frac{\omega_{0}}{\varepsilon_{0}} \frac{\Gamma / 2}{\left(\Gamma(2)^{2}+\delta^{2}\right.} \\
&= \frac{e^{2} n_{a}}{2 \varepsilon_{0} m_{e} c} \frac{2 / \Gamma}{1+\left(\frac{\delta}{\Gamma / 2}\right)^{2}}=\frac{n_{a} e^{2}}{\Gamma \varepsilon_{0} c m_{e}} \frac{1}{1+\left(\frac{\delta}{\Gamma / 2}\right)^{2}}
\end{aligned}
$$

- SAME FORM IN $S \rightarrow 0$ LIMIT, $a \propto \frac{1}{1+\left(\frac{\delta}{\Gamma / 2}\right)^{2}}$

SImplify using classical decay rate

$$
\begin{gathered}
\Gamma_{c_{1}}=\frac{e^{2} k_{0}^{2}}{6 \pi \varepsilon_{0} m_{e} c} \\
a_{c_{1}}= \\
\left(\frac{6 \pi \varepsilon_{0} m e x}{e^{2} k_{0}^{2}}\right) \frac{e^{2}}{\varepsilon_{0} \sum_{e} c^{2}} n_{a} \frac{1}{1+\left(8 /(i 2)^{2}\right.}
\end{gathered}
$$

$$
=\frac{6 \pi}{k_{0}^{2}} n_{a} \frac{1}{1+\left(\frac{\delta}{r / 2}\right)^{2}}
$$

© MATCHES $S \rightarrow 0$ LIMIT

COMPARE TO 2-LEUEL MODEL

$$
a_{\text {Quantum }}=\frac{6 \pi n_{a} / k_{0}^{2}}{1+S+(2 \delta / \Gamma)^{2}}
$$

\uparrow Quantum effect (Saturation)

Scattering force

$$
\begin{aligned}
f_{S C} & =(\text { PHOTON MOMENTUM }) \times(\text { SCATTERWG RATE }) \\
& =\hbar h \Gamma \rho_{22} \\
& =\frac{\hbar h \Gamma}{2} \frac{S}{1+S+(2 \delta / \Gamma)^{2}}
\end{aligned}
$$

MAXIMUM ACCELERATION ($s \rightarrow \infty)$

$$
a_{\max }=\frac{f_{\text {max }}}{M}=\frac{\hbar h \Gamma}{2 M}
$$

Sodium:

$$
\begin{aligned}
& \lambda=589 \mathrm{nM} \\
& M=23 \mathrm{u} \\
& \Gamma=9.8 \times 2 \pi \times 10^{6} / \mathrm{s}
\end{aligned}
$$

$$
a_{\text {max }}=9 \times 10^{5} \mathrm{~m} / \mathrm{s}^{2}
$$

CROSS SECTION

- Common way to quantify absorption per atom

DEFINE $\sigma \equiv \frac{a}{n_{a}}$ \& LENGTH ${ }^{2}$
THEN $\frac{d I}{d z}=-\sigma n_{a} I$

$$
\sigma=\frac{6 \pi / k_{0}^{2}}{1+S+\left(\frac{\delta}{\Gamma / 2}\right)^{2}} \equiv \frac{\sigma_{0}}{1+S+\left(\frac{\delta}{\Gamma / 2}\right)^{2}}
$$

WHERE $\sigma_{0}=6 \pi / k_{0}^{2}$

$$
=\sigma(s=0, \delta=0)
$$

- Resonant unsaturated abs. cross section

