The Lorentz Oscillator Model

Ariel Sommer

January 22, 2020

Contents
1 The Atom as a Harmonic Oscillator 1
1.1 Driven Oscillation of the Electron . . . . . . . . ... ... ... .. ....... 1
1.1.1 Complex Representations . . . . . . . . ... .. ... ... ...... 3
1.2 Electric Polarization of the Atom . . . . . . . .. ... ... ... ... ... . 3
1.2.1  Vector Notation . . . . ... .. ... . 4
1.3 Polarization and Intensity of Light . . . . . . .. ... .. ... .. ... .... 4
1.4 Oscillator Strength . . . . . . . . .. 4
1.5 Radiative Damping . . . . . . . .. .. e 5
2 Light Propagation in an Atomic Medium 5
2.1 Polarization Density and Susceptiblity . . . . .. .. ... .. oL 5
2.2 Electromagnetic Waves . . . . . . . . ... oL L 6
2.3 Phase Shift and Absorption . . . . . .. ... 7
2.3.1 Phase Velocity and Group Velocity . . . . . .. ... .. ... ... ... 8
2.3.2  Absorption Cross Section . . . . . . . .. ... oo 8
3 Optical Forces on Atoms 8
3.1 DC Electric Field . . . . . . . .. .. 8
3.1.1 Potential Energy . . . . . . . . ... 8
3.1.2 Force in a Non-Uniform Field . . . . . ... ... ... ... ....... 9
3.2 Optical Forcesinan ACField . . . . . ... ... ... ... .. ......... 10
3.3 Dipole Potential . . . .. ... .. 11
3.4 Radiation Pressure Force . . . . . .. . ... ..o oL 12

1 The Atom as a Harmonic Oscillator

The Lorentz oscillator model treats the atom as a classical harmonic oscillator interacting with
light. This model makes accurate predictions in some situations and it will help us understand
the quantum mechanical model of atom-light interactions.

1.1 Driven Oscillation of the Electron

When light shines on an atom, it causes one of the electrons to oscillate. If the light is weak
enough, the oscillations will be small and we can approximate the atom as a harmonic oscillator.
Experimentally, we know that atoms have discrete resonant frequencies. Suppose we want to
model just one of those resonances. We can then describe the average x position of an electron
relative to the nucleus using the differential equation for a driven, damped harmonic oscillator:

¥4yt 4 wir = —eF,(t)/m (1)



Here y is the damping rate of the oscillator, wg is the angular frequency of the resonance, the
electron charge is —e, and m is the reduced mass of the electron and the nucleus, m ~ m..
The z-component of the electric field at the position of the atom is E.(¢t). We make the
approximation E,(r,t) ~ E,(0,t) = E,(t), which is valid when the wavelength of the light is
much larger than the size of the atom so that the electric field is uniform across the atom. We
consider light that is monochromatic, linearly polarized in the x direction, and propagating in
the z direction. The electric field of the light at the location of the atom is then:

E,(t) = Egcos(wt) = Re [Ege™'] (2)

For convenience, we choose the phase of the oscillation such that it is represented by cosine,
although the final results would be the same for any choice of phase. Note that in writing (1),
we are neglecting the Lorentz force due to the magnetic field of the light, which is a factor of
Z/c smaller that the force due to the electric field.

The electric field (2) describes a continuous-wave (CW) light field like that produced by
a CW (i.e. non-pulsed) laser. We will use the Lorentz oscillator model to understand the
propagation of the light through a vapor of atoms, and to predict the forces exerted by the
light on the atoms. To do so, we will employ the steady-state solution for x(t), which oscillates
at frequency w. We write the steady-state solution in the form:

z(t) = Re [:Tce*mt] (3)

where Z is a complex number. The phase of Z tells us the phase of the oscillation relative
to the electric field. In the language of inhomogeneous linear differential equations, (3) is a
“particular solution.” It is also the steady-state solution, because the homogeneous solutions
to (1) decay to zero at a rate of y. Plugging (3) into (1) gives:
e
— W% — iwyE +wit = ——Ep (4)
m
—eEy/m

2

Wy — W — 1w

(5)
The real part of  describes the in-phase response of the oscillator, while the imaginary
part represents the out-of-phase response. To see this explicitly, we write Z in terms of its real

and imaginary parts:
T=U—-1V (6)

(the minus sign is included to be consistent with other references). The real and imaginary
parts are:

—eEy wi — w?
p— 7
o O Jye) KR (e @)
y = o e (8)

m (W = WP+ (@)
The real position z(t) of the oscillator is then:

z(t) = Re [(U — iV)e "] (9)
= U cos(wt) — Vsin(wt) (10)

which shows that U/ is the amplitude of the in-phase response and V is the amplitude of the out-
of-phase response (also called the in-quadrature response, because U and V can be represented
as the legs of a right triangle in the complex plane).

The response can also be represented in terms of its amplitude and phase:

F=VU2+V2e (11)



where the phase is:
§ = cos™HU/NVU? +V?) (12)

The position of the oscillator in terms of the phase shift is then:

2(t) = Re [VUZ + V2 CHD] — /U212 cos(wt + 6) (13)

1.1.1 Complex Representations

We can think of Z as the complex representation of x(t). In general, given any quantity q(t)
that oscillates at angular frequency w, we can define its complex amplitude g via

q(t) =Re [(je*i“’t] (14)

The complex phase of ¢ encodes the phase of the oscillation. The quantity ¢ is often called a
phasor.

1.2 Electric Polarization of the Atom

When the average position of the electron is displaced from the center of the atom, the atom
has an electric dipole moment. The dipole moment will tell us a lot about how the atom
interacts with light. Recall that the electric dipole moment of a collection of particles is defined

as:
d= qurj (15)
J

where ¢; and r; are the charge and position of the j-th particle. For an atom excited by laser
light, the excited electron has charge —e and position r., while the nucleus together with all the
other electrons have charge e and average position r,,. Defining the displacement r = r, — r,,,
the dipole moment of the atom is then

d = —er, t+er, (16)
= —er (17)

For discussion of light that is linearly polarized in the x, or i, direction, the dipole moment
becomes:

d(t) = d ()i with dy(t) = —ex(t) (18)
As with the position, we can describe the dipole moment in a complex representation:
dy(t) = —eRe [fe '] =Re [cim e_i“t} (19)
where
dy = —ei (20)
& Bofm (21)

- wi — w? —iyw
Equation (21) shows that the amplitude of the atomic polarization is proportional to the ampli-

tude of the electric field. We define the polarizability a(w) of the atom as the proportionality
constant (at the given frequency w):

d, = a(w)Ey (22)
The polarizability is therefore:
e?/m
- VA 2
o) = = (23)

Near resonance, w ~ wyp, and we can approximate:

aw) ~ _2;;0 (A —|—1i’y/2> (24)

where A = w — wy.



1.2.1 Vector Notation
For an electric field in an arbitrary direction, the complex representation is:
E(t) = Eg cos(wt) = Re [Ege™™"] (25)
We define the complex representation of the dipole moment as:
d(t) = Re [& e—iwt} (26)

The complex dipole moment is then related to the electric field by:

d = a(w)Ey (27)
1.3 Polarization and Intensity of Light

So far we have assumed linearly polarized light. We can describe elliptically polarized light by
using complex notation:

E(t) =Re [E e_i“’t] (28)
= Re[E] cos(wt) + Im[E] sin(wt) (29)

In that case, the complex dipole moment of the atom is:

d=a(w)E (30)

As an example, we can describe a plane wave propagating in the z direction with circular
polarization in the z — y plane using E = %Eoe“”(l, i,0).
In general, we describe the polarization of light using a complex unit vector € which we
call the polarization vector: _
E = FEyée'™* (31)

where Ej is real and €* - € = 1. Some common cases:

linear polarization along z : E=12
right-hand circular polarization about z : € = %(5{ +1iy) (32)
left-hand circular polarization about z: & = %(f{ —i¥)

For arbitrary polarization €, the time-averaged intensity of the light is:

I=ce (E-E), (33)
1
= §ceoE§ (34)

1.4 Oscillator Strength

The classical result for the polarizability of an atom is almost correct, but quantum mechanics
makes two modifications. The first is just a reminder that the harmonic oscillator approxi-
mation is only valid for weak fields. For stronger fields, we will see in the quantum treatment
that the response of the atom becomes nonlinear and a(w) essentially becomes dependent on
the light intensity. The second modification is that, even for weak fields, we must include a
correction factor called the oscillator strength. For the transition from the ground state
to the j-th excited state, we write the oscillator strength as fo; > 0. The oscillator strength



modifies the sensitivity of the atom to the electric field, and can be including by replacing
E; — fo; B in equation (1). The polarizability due to the 0-to-j transition is then:

_ ij 62/m
a0y () = (35)

O ( ( L ) (36)

B 2ij0 W — Wjo + Z’yj/2

Here wjo is the resonant frequency of the 0-to-j transition and ~; is the decay rate of the j-th
excited state. The total polarizability of the atom in the ground state is then given by a sum

over the excited states:
ao(w) =Y ag; () (37)
J

Qualitatively, the oscillator strength accounts for the fact that the atom has many reso-
nances. It can be loosely interpreted as the probability that the atom will behave as a harmonic
oscillator with resonant frequency wjo. This interpretation is supported by the fact that the
oscillator strengths sum to unity:

D foj=1 (38)
J

This result is known as the Thomas-Reiche-Kuhn sum rule and is proven nicely in the notes
by Steck, Section 1.2, and in the book by Metcalf in appendix 3.A. It is also worth noting that
the oscillator strength depends on the polarization of the light.

1.5 Radiative Damping

Classical electrodynamics predicts that an oscillating charge should radiate energy. For our
model of an electron undergoing harmonic oscillation, the classical damping rate is:

e?w?

w=—" 39
el 6megmec? (39)

2 Light Propagation in an Atomic Medium

2.1 Polarization Density and Susceptiblity

If we have a gas of atoms with number density n,(R) and each atom near position R has
dipole moment d(¢), then the polarization density is

P=n,d (40)

In the complex representation, the complex polarization density is then:

P=n,d=n,awE (41)

where we have used the general result for the dipole moment (30) in the second equation.
Meanwhile, in electricity and magnetism, the complex susceptibility y is defined as:

P =¢x(w)E (42)

The susceptibility is therefore related to the polarizability by:

Na
X(w) = —a(w) (43)
€0
Although it’s not obvious, you can check that y is a dimensionless number. For a dilute gas
(i.e. small density of atoms), |x| < 1.



2.2 Electromagnetic Waves

A medium, such as an atomic gas, that develops a polarization in response to an electric field
is called a dielectric medium. The medium can also have a magnetic response, leading to a
magnetization density M. In a moment, we will assume M = 0, but for now we keep it.
Maxwell’s equations in a material are expressed with the help of auxiliary fields D and H,
given by:

1
H=_—B+M (45)
Ho

We will assume that the free charge ps and free current J; are zero, meaning there are no
extra charges or currents other than the atoms themselves. Maxwell’s equations are then:

V-B=0 (46)
OB

VXE——E (47)

V-D=0 (48)
oD

VxH= o (49)

Since we are considering a linear medium, where the polarization density is a linear response
to the electric field, we can also show that the divergence of the electric field is zero:

V-E=0 (50)
Now assuming M = 0 for simplicity, we can also write:

We can use these equations to find a wave equation for the electric field. To do so, we will use
the vector calculus identity V x (V x E) = —V2E + V(V - E) together with V- E = 0 to get:

V?E = -V x (V x E) (52)
0B OH
ZVXEZMOVXE (53)
9’D
= MOW (54)

We will solve the wave equation for a monochromatic field of the form:

E =Re [E e_i“’t} (55)
where E = E(r’) is a function of position r’. Using the definition (42) of x(w) the polarization
density is:

P =Re [eox(w)E e_i‘”t] (56)
The definition (44) of the “displacement field” D gives:
D = Re [60(1 +y) Ee*iwt] (57)
Substituting the equations (55) and (57) for E and D in the wave equation (54) gives:

V2E = —k2(1 + )E (58)



where we have introduced the definition
ko =w/c (59)
and c is the speed of light in vacuum:
1

vV Ho€o

We can solve the differential equation (58) for E for a plane wave traveling in the z direction:

(60)

C =

E = Eg et (61)

where k is a complex number. Plugging our plane wave (61) into the differential equation (58)

k=ko1+x (62)

Here we have chosen the positive square root to describe motion in the +z direction. Since y
is complex, /1 + x is a complex number. We call it the complex index of refraction 7:

i=/T+x (63)

1
~ 1+ 55X (64)

where the second line uses the Taylor expansion for |x| < 1, valid for a dilute gas. Formally,
we have now solved for the electric field of a plane wave in an atom medium. Collecting the
above results, we can write our solution as:

E = E, ¢/"*o* (65)

for E gives:

In the next section we will study the physical meaning of this solution. We will see that the
real part of n corresponds to the usual index of refraction and leads to a phase shift of the
light, while the imaginary part of n leads to absorption of the light.

2.3 Phase Shift and Absorption

We separate n into real and imaginary parts:

1
n, = Re[A] =~ 1+ iRe[)d (66)
1
n; = Im[n| ~ ilm[x] (67)
The complex electric field then propagates according to:
E _ E‘O ein,,.koz efnikoz (68)

The wavevector is increased by a factor of n,. compared to the vacuum wavevector kg = w/c.
Therefore, n, is the ordinary index of refraction, also called the phase index. After a
distance z, the phase of the light wave will differ from what it would have been in vacuum by
an amount:
A¢p = (n, — Dkoz (69)
The phase shift can be detected by measuring shifts of interference fringes in an interferometer.
The imaginary part n; causes absorption. The intensity I(z) of the light is proportional to
|E|2, so the intensity decays exponentially:

I(z) = Ipe™?miko? (70)
= [pe™ % (71)
In the second line above we have introduced the absorption coefficient a:

a(w) = 2n;ko (72)



2.3.1 Phase Velocity and Group Velocity

Writing the effective wavevector as k = n,.kg, we can obtain the phase velocity as:
Up=— = — (73)

The phase velocity gives the speed at which the phase fronts of the wave travel. If n, < 1, the
phase velocity would exceed ¢. Can this happen? Let’s see! For a dilute gas in the Lorentz
oscillator model, the phase index is:

nee? W —w

2eom (wi — w?)? + y2w?

2

n, ~ 1+ (74)
When w > wg, the second term is negative and we have n, < 1! However, the phase velocity
is an artificial quantity, and it does not represent the speed of information travel, so there is
no conflict with special relativity.

To find the speed of information travel, we need to look at the speed of a pulse, or wave
packet. This is called the group velocity and is given by:

- dk:}dw - {d(ZLw)]l

Vg

(75)
As it turns out, vy < ¢, as required by relativity.

2.3.2 Absorption Cross Section

For a dilute gas, we can describe the absorption of light using the concept of an absorption
cross section. Imagine that each atom is actually an opaque object with a cross-sectional
area of 0. As light propagates, it would then be attenuated according to:

dl
— = —nuol 76
7, = a0 (76)
This is called Beer’s law of absorption or the Beer-Lambert law. Comparing to our earlier
result (70) for light absorption, we see:

o(w) = < Im[a(w)] (77)

€pC

where we have used the dilute gas approximation of (67).

3 Optical Forces on Atoms

The electric dipole moment of an atom interacts with light, leading to an potential energy
U. We will see that this potential energy is proportional to the light intensity in the Lorentz
oscillator model. According to classical mechanics, a gradient in potential energy leads to
a force through F = —VU. Therefore, a gradient in light intensity will cause a force to be
exerted on an atom. This force is used to trap atoms and other polarizable particles using a
technique called optical tweezers or optical dipole trapping.

3.1 DC Electric Field
3.1.1 Potential Energy

As a warm-up, let’s first consider a static electric field E = Ei. Consider a particle with DC
polarizability o = «(0), so that its dipole moment is d, = —ex = aF. Note that « is purely



real at w = 0. Increasing the electric field by an amount dE stores an energy dU in the system,
given by the Work-Energy Theorem from classical mechanics:

dU = —Fdx = —(—eE)dx = —Ed(—ex) = —Ed(aF) = —aEdFE (78)

The potential energy of a polarizable particle in a static electric field of strength F is then:
B 1
U= —a/ E'dFE' = —iaEQ (79)
0

The electric field could have been chosen to point in any direction, so in general we can interpret
the E2 in (79) as the square of the magnitude of the field, E? = E-E. Since the dipole moment
is d = aE, we can also write this result as:

1
U=—3d-E (80)

As you can see from the above argument, the factor of % in equation (80) results from the
fact that the dipole is induced by the field. In contrast, a particle with a permanent dipole
moment simply has a potential energy —d - E.

In the above derivation, we have implicitly assumed that the electric field is uniform.
Specifically, we assumed that the electric field is the same at the center of the atom as it is
at the position of the electron. To see this, recall that, rigorously speaking, z is actually the
displacement of the electron from the rest of the atom, x = x. — x,,. The work done on the
atom by increasing the field is then proportional to E.dz. — F,dxz,, where E, = FE(z.) and
E, = E(z,). By assuming FE, = E,, = E, we can factor out the FE and get F dz as in equation
(78). For a non-uniform electric field, the final result in equations (79) and (80) is still accurate
as long as the electric field varies by only a small amount over the size of the atom.

3.1.2 Force in a Non-Uniform Field

Since an atom is neutral, a uniform electric field exerts no net force on the center of mass of
the atom. However, if the electric field varies with position, it will exert a non-zero force on
the atom. The force is given by:

F=-VU= %ON(EQ) (81)

At first, (81) may seem counter-intuitive: it says that the direction of the force is along the
gradient of 2. But what if E points in the 2 direction, while its magnitude changes along the
y direction? The equation F = ¢E for the force on a charge suggests that the net force can
only be along the direction of E, i.e. the x direction in this example. How can the net force
be in the y direction? The resolution of this paradox lies in Maxwell’s equations. In vacuum,
a static electric field satisfies V- E = 0 and V x E = 0. Therefore, if the x-component F, of
the electric field varies along y, the field must have a non-zero y component. Specifically, from
the curl equation, 0F,/0x = 0E, /0y # 0, which means that E, cannot be zero everywhere.
Since the field has a y component, it is able to exert a force in the y direction. Equation (81)
conveniently does not depend on the direction of E, so you can use it if you just know the
magnitude of the field.

The equation for the force on a polarizable particle in a non-uniform static electric field
can also be derived by considering the forces on the individual charges. Consider an atom with
center of mass position R = 0, its nucleus (and all but one of the electrons) centered at r,,,
and one of its electrons displaced to the average position r.. The i-th component of the net
force on the atom is:

F; = —eE;(r.) + e E;(ry)
~ —e(re - V)Ei|lr=0 + e(rn - V)Ei|r=0
= —e|[(re — 1) - V] Eilr=0
= —e(r- V)E;|r=0

oo
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where E;(r.) and E;(r,) have been Taylor expanded about R = 0 in the second line, and we
have defined r = r, — r,,. The Taylor expansion makes it clear that we are assuming the field
varies by a small amount over the size of the atom. Moving to vector notation for F, and
leaving the R = 0 implicit for simplicity, we have:

F=—er-V)E=aE-V)E (86)

Here we have used the fact that the dipole moment is —er = d = aE. Finally, we need to use
a vector identity:

(E-V)E = %V(Ez) —~Ex (VxE) (87)

Since the field is static, V x E = 0 and we finally obtain:
1
F= 5aV(E2) (88)

This shows that we get the same net force whether we start from the potential energy or from
the forces on the individual particles.

3.2 Optical Forces in an AC Field

Now we derive the force on a polarizable particle in a non-uniform electromagnetic field that
oscillates at angular frequency w. We will use the method of calculating the total force on the
individual charges. First, since we’ve seen that a non-uniform field cannot point purely in the
z-direction in general, let’s write the electric field at position R in vector notation:

E(R,t) = Eo(R) cos [wt — (R)] (89)

Here Eq(R) is assumed to vary slowly with R. The phase ¢(R) describes the propagation
of the light. For light with wavevector k, ¢(R) =~ k - R. In addition to the k - R term in
the phase, there is also a contribution called the Gouy phase, however the exact form will
not be important here. In addition to the electric field, Maxwell’s equations require that the
electromagnetic wave also has a non-zero magnetic field B(R, t) &~ By(R) cos [wt — ¢(R)], with

Bo = R X Eo/C.
To find the force on the atom, we must include the Lorentz force due the magnetic field:
dr, dr,,
F = —cE E, — B — x B
eE. + eE,, edtx e—l—edtx n (90)
d
~ (—er-V)E — ed—z x B (91)

In the first line, we used the abbreviations E. = E(r,.), etc. In the second line, we have taken
the leading term in the Taylor expansions in r. and r,, similar to what we did for the static
field case in equation (83). As before, we defined r = r. — r,,. We can now substitute in
expressions for —er from our treatment of the Lorentz oscillator:

—er =d = Re |a(w)Eq e*i(‘”t*@] (92)
= Re[a(w)] Eg cos(wt — @) + Im [a(w)] Eg sin(wt — ¢) (93)
= a,(W)E 4 a;(w)Eq sin(wt — ¢) (94)

The first line is just a generalization of equations (26) and (27) to include the phase. In the
last time, we introduced the notation a,(w) = Re [a(w)] and «a;(w) = Im [a(w)]. For the time
derivative, we get:

10



In the above, we have assumed that the velocity of the atom is initially zero, so that LE(R(t), t)
OE/ot.

When we calculate the force, we will average it over a time that is large compared to
the period 27 /w of the light. We use the following property of time averages of sinusoidal
functions:

(cos(wt) sin(wt)), =0 (97)

The time-averaged force is then:
(F), = <(—er V)E — e% x B>t (98)
= <ar(w)(E.V)E+ar(w)%};} x B4+ wa;(w)E x B> (99)

In the above, we used (97) to eliminate the second term coming from (94). We can now use
the vector identity (87) along with the Maxwell equation V x E = —9B /0t to get:
1 0
(F), = <ar(w) [QV(EQ) + a(E X B)} + wa;(W)E x B> (100)
t

The quantity E x B is proportional to the Poynting vector S = (E x B)/uo. The Poynting
vector gives the flux of energy carried by the electromagnetic wave. Assuming a steady (CW)
laser beam, the time derivative of S will average to zero, allowing us to drop the middle term
in (100). Meanwhile, the time-average of the Poynting vector is related to the light intensity
I and the direction of propagation k of the light wave:

(S) =TIk (101)
The time-average of E? is also proportional to I:
I
E* = — 102
(7)== (102)

The time-averaged force can then be written as a sum of two terms:

<F>t = Fdipole + Fycatt (103)
where the first term is due to the real part of a(w):
o (w)
Faipole = VI 104
dipol 2€pc ( )

and the second term is due to the imaginary part of a(w):

Fycatt = wo(w)pol k (105)

3.3 Dipole Potential

The “dipole” force Fgipole can be interpreted as resulting from the potential energy of the
induced atomic dipole in the electric field of the light. To see this, we note that Fgipole can be
written as the gradient of a potential function:

1
FdiPOIC = V <2a7‘ (w)E2> = 7VUdipolc (106)
t
So the dipole potential is:
1
Udipole = _iar(w) <E2>t (107)
o (w)
=—-———=T 108
2600 ( )

11



On the other hand, the time average of d - E is:
(d-E), = (a0, (w)E- E), = a,(w) (E?), (109)

So we can also write the dipole potential as:
1
Udipolc = _5 <d . E>t (110)

Equation (110) is the time average of the equation for the potential energy of an induced
DC dipole (80), which makes a nice connection between the DC and AC cases. In practice,
equation (108) is the most useful form of the dipole potential here, because it involves the light
intensity, which is usually measured in experiments.

3.4 Radiation Pressure Force

The “scattering” force Fycaty results from the momentum transfered to the atom as it scatters
light from the laser beam. This force is also referred to as radiation pressure because it is
exerted in the direction of the light propagation k. The scattering force is not a conservative
force in the sense that it cannot generally be written as the gradient of a potential energy. To
see this, you can check that the curl of the force is non-zero:

V X Focary = [woi(w)uoVI] x k #0 (111)

To see that this is non-zero, note that the gradient of the intensity of a laser beam points
mostly in the transverse direction, while k points in the longitudinal direction, so their cross
product is non-zero. Since V X Fgcatt is non-zero, the vector field Fgcqtt cannot be written as
the gradient of a scalar function.

Since the scattering force is not conservative, it can dissipate energy from the system. This
fact is exploited in laser cooling to cool gases of atoms or other particles to near absolute
zero temperature. In laser cooling, energy from the atomic motion is irreversibly transferred
to the electromagnetic field through light scattering. On the other hand, light scattering can
also lead to heating, depending on the situation.

12
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2€D L\JaL" LAIL' ;2"«)
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A’_, L -

S /"OE B

= W k2 awt
= Re[_&dee, Ux
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Qg E R&[E ~ L'n’ ;wt}

-B RQ,‘_B dL,Z m/h)
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- OpTicaL Forces on AToms

(JARM-OP 1
SKETcU THE FollowING AND Fiud AVG “ALUL!
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ARV A v S
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‘/} N \/\ e Ave =0
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Glog TUE ACTUAL ENERGY SToRED (v THE SYSTEM
* HAVL To AouWT for THE {fActT THAT Tug DPoLE
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* DERWATION: LofIwTZ MoTBS 2.0

~

CONSIDER E = L% cos(wt) by
X(t) = (/{ cos(wi) - \) Sn(wt) = KC[{H——: U) -—wtl
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o CLASSICAL! MOMENTUM _
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linek
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« REVMEW of  HYDR6GEN AToM £ Paul PawCALE
* [DENTICAL PARTICLER
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WRVTE  GROUND-STATE  ELECTRON CoMNF(GORATION of :
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Tt exist
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ELECTRON  WAUEFUNCTIONS
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PN = AN
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o o

— - 2
—> P(r) = /’/Lnj,(.r)/l

F1RsT EXcTED STATES h=2

L=0: R, () < (- r,me_r/mm
azo: r'QZO
N S
i Dz’ao\/—" r
-t/ 24,

Ry=< (e

: . .
Ha,




- ACCOENTAL DEGENEAA Iv L
- for M& \o, Eno DEPeDs on L

RADIAL NoDES: 2ER0OS of weer for rro
- €20 DOESN'T CouNT

H Rodinl pobes U = -L-l
- h = U+ Ll

n o v

) o0 6 J
2 O [ v
2 1 Y, v

B.G. SKRETCH (g0 =Ry for  Hp  pwip
Nn=4, L=]
V= n-L-l = H-l—\‘:@

VARSS

~—" -

YLy,




MULTIELEC TRON  AToms
— How To: GUAVRIUNCTIONS foR MUATIALE ELECTRONS
—  OR\GIN  of PAULL PRINCIPLE

CoNSIDER  Two  DENTICAL PARTICLES (1472.)
.o, Two BLECTRONS
LWt SAME SPIN PRoJection s Mgg=Mso

tve. AN
s
To-PARTICLE  (yAVRFUMCTION \V(“f'\ ) 2

MEANING = JowT PRog. DEMSITY S
— N . ~
F(-\"l;Q) Zlq’(ﬁ,ré)[?’

— X .
Peoc. oF € witUw dn of 6/
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E XCRANGE SYMMETRY
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QUANTUMN  STATISTICS
BoSoNS:  e® = |
‘;U(Q)(‘,,] = Y, 00 (BauaL SAN )
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FERMIONS © o2 =- 1
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« £.G- ELECTRONS ) TROToN , NEOTRONS

SPN— STATISTICS CoNNECT 6N
INTEGE. SPIN (& O 42 .. ) —» BoSoN
UALE-INTSGE SN (66 V2912, . = [gemeN

ELECTRON: Spyy = — # ERMION
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FRoDUCT  \yAUL FUNCTIONS
— foe Two  INDISTWEUVISUABLE PARTICLES

Y (7, 0) 7 Yalé)¥(B)
Of Vota)Yul) & SAME Enerey
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SYMMERIZE: V(@7 ) = 2V@E, &)
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c THEN
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= O
WAVE fovcioN SYwnsTRY
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SEPARKTION of  UARIABLES
Fog NoN- INTERACT NG PARTICLES | POTENTIAL ENERGY
U, 8) = V@) +V (%)
~ TiISE SoLutd RY SeP. of VARS

PEL\UM  GRound STATE

CONFIGURATION = |52
PAUL'U T HE ELEcTRONS {,{A\)E OPPOSI T SF”\/
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SurUEY of  fromic STRuCTURE : Paat L
+ ORIGIN of Pauct PrivafLE

LS CoupLivg

fwe £ PYPERFINE STRUCTUREL

MULTL - ELECTRON  (WAUEF uneTIONS

FoR Two BLECTRoNS / SamE SPV (i AY)
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LV(?\)E)_,) - - Lk(,rj.,r'(
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D ToTAL SAN MosT B8E 8=0
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LS coufLwwe
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=
2
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|
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N
S= P 8,rn 8" z 5,
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P
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[N ELECTRON FRAME

EffecT
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&
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“ ToTAL Seinv
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ANGULAR MOMENTUM  ADMTION

o -
Two  AVGULAR  MOMEINTA, e L 4 S
LET F+L+%
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(. Usive Lz, 92 “"UNCouPLEp BASIs”
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L ¢T INTERACT @ L, 8 MNoT Convstavr
No EXTERNAL TOoRQUE ™ T CoNSTANT

CASSICAL ) .
T (consT) o LENGTUs o [ [5\
. C ALE  Cowsy
M/ BT Dections Cuanet
Ry

Decouverp BASIS
QUAVTUA STATES - {L S MLMK7 - /MLMQ

[ * MM = F70 (L) mm?
St = PSS A o

Ly MM, > = b IMMSD
Syl > =4 [



CouPLED BASIS
( ToTAL T=0L+t3s )

J OBEYS ANG. oM. CoMmyTATIoN RYLES
[ jx,jbjﬁiﬁjz etc

D[ F2 =0 -2 FIND SIMuLTAVEOUS
L J . 32] ELG. STATLS

INTRODUCE QUANTUm NUMBERS O, M,
COUPLED BASIS: [L,S SMy = [ M)

B VALUES of T° T

D ausr = 1T TMsD
’J‘Z/ 3’/‘/{3-5 = #)Mj[J’Mj>

WHERE T = [L-S1, . L +S

sz "'.—31 -y j
COUNT: Etu jlzmx(n.,ﬁ), J=mw(L,s) j
BAS (S # STTES
| M MY (2L ~1)(28+)

13M37 [92(5;3‘)#1] + 2[,j;§,+l)* ( %ANTHMBT)C
et R G450t ] S
" [l [ e G
2
—_—/

—_—
MEAN Miusir

= (25w )(25x) = (ALel)(dS+1)



CHANGE of BASIS  foRmuta:
for AW BAsis  §1nd3

4> = T laydnlyd
RELATE  CoUPLED 4 DECOUPLED BASES

|jl\,\3—> - MZM \MLMS7<MLMS | TmsD

[y — |
CLERSCH -G 0RDAN CokEL

CAgAL-VALUED)
C\REWISE,
\N\\J’\gw - %MT\-S“3><IN\3\N\LN\S>

u/——/—J
SMe  CG cobffiCc enTS



HYPER FINE STRUCTORE

© FINE STRUCTURE  SUEfILLS foa MANY PugpoSLS
BUT someTimes NEED MoRe PRECISIoN

EFFECT of NUCLEAR SPIN MAGNLTIC MOMEYT

foy e
(7 57:, (~ Two MAGMETS)
Muc.

e~ PRoDUCES B f16Ld Be*-3  (Aprrox.)
INTERACTS w/ MAGNLTIC MoMENT of Muc.

-~

LEr T = NUC. SPIN ANG MOMENTUM
—0 —~v
/(;Noc T
- — —_ -
ENERGY of iy v Byt —fuBe X T+

~ —

Mg AT /H

SAME TRicK

T\
0

— =
= T +73 ToTAL (NTERMAL ANGULAR
MOM L Tum of ATom

T4 275+ 32

U

Hyp EIGENVALVES :

E,.- é‘: ['F({:ﬂ)—I(I—tl)‘j(’S“H)}



ALLOWED VALUES of F:
F’ [T”j’/ =7 L+9

2 . 1
EA. Me: T=7%

GND STATE: %5
&) FInd S,L,T & TEAM/LEVEL SYMBol (REviEw)

<L =0 T=% ; By,

L) FiND ALLowed f

an\" |T-51 = %”Ji: [
Fm«.x I+5 = F+7°2
1F= L\
DVAGRAM :
—~— F=2

2

“~

Uy < 1 AR ‘F:{
A=K ; £= [77] CU2



ATOM(C HAMWLTOMAN  (NO APpLied FIELDS)
H, = Hye + Hyg *Hﬂi

HYPER Fv
MON - RELATWISTIC FLVE- fFuk

Struct, § TRVT.

=1 L & (<) U
v " \
Rwetic INTERACTION ELECTRON -
wINvCLER® ELECTRON
CHARGE
tZ¢ INTERACTION

Hye Commutes w L 4 S
= LS CoulLwE6

P\,;S ~ ‘f‘:. LS CoMMUTES &/ J°

= LT ACCoARDWE To O

— -~ )Z
HHFS R T35  CcommiTes w/

=) SPLIT ACCoRDWG To F



PHY 4y SPRING Q00
LECTURE €

2 /1212030

v WED FEB1G: Sommer AwAY /CQ\HZ/ uwz—arﬂgdsogw//smamo

* ToDAY : OPTICAL TRANSITIONS (ovgRry(w)

' SELECTION RULES , A-LEVEL Atom

REVIEW:  DEfwe THE ANGULAR  MOMEVTUM JARIABLES
a) L. ELECTRON OABITAL ANG. MUOAENTUM

LY S ELECteoN SPW

<) J T.-r? =3

d) T MUCLEAR SPIV

e) f ToTAL (NTERMAL AUG. Moueytum T

ATOM-LIGHT  (UTERACTIGN
PrEwous:  ATom 20 CLASSICAL  [ARMeMC OSCLLLATOR
Now : AToMr = QRUANTUM SYSTEM

2 RASIC PROCESSES

W oJT
[. ARSORPTION ﬁ/\//“"’» P Tovqy
N

A. STimuaTED EmissioN v ZNWWT
M A Nk

* A NEw, (DENTICAL
Py ToN APprARs

3, SPONTANEOUS EmisSion Y@ I T



ARSORPTION

MULTILEUEL ATOM |V EM FELD (Laser) AT £f226 o
(F_Nwm_r:uw) Two -LEVEL

R g__~ 1hi
(LASBﬁ)
£, E—

ATOM BXCITED To ARESONANT o0k NEAR—RESOMANT LEYELL :
fw = E/ E (E}\)EF\GY COMSEKVATIOI\/)
‘—»Afmox Ble of TIME-ENERGY OMNCERTAWTY
o FINTE PULSE : Finvime EXLcTED STATL LHETIME
CAN NEGLECT 0THER LEUVELS
- Two-LEYEl MODEL

NoT INcLUDED (v Two-LEVEL MoDEL*
MULTIPUDTON  TRANSITION S

*MULTPHOTON RESOVANVCE * NEED 2 oR MeRE LEUELS



DEGENFRACY N Two-LBUEL MoDEL.
te.  %*Na GND STATE MAWIFoLD

2s TTOFPR

N— fe CMe=-Lgl

F=1 Smres: /35/25‘11,F: |, M >
Mp= -0 1 (THREE-FoLD DEGEVERATE )

EXCITED STATE Auso DEGENERATE
e. 13p, *Pp F=2,M/D
fFor MF/ =-2,-,01,2

Two LEVELS, QuT MAMY STATES

/
F"/L)F~2' 1



REDUCTION Tob Two STATES
¢« ASSUME  ATom STARTS (N A SPECI[ic STATE
es.  (We=od = 11> = /35 28y, F ol M)
FuvaL STATE -
. PHOTON CARRIES ANGULAR MOMEMTUM ,)<‘/-1u

wrd g7 (spv et 3,

AToMm ABSorpS FHoToN/ GAINS ANGULAR MoM ENTUmM
F/= Fr ]

i

. ELECTRIC FIELD AT Arom: Elw= £ Re[ &t ]

PoLarizATIoN ¢ | Plotoy m;|  AM, SYmgoL
f% NACTIN ‘ | o
£.° 2 0 2 ™
£ = E(%-if) - | | o

“SPHERICAL BASIS”

SéLEcT\oN RULES
ALLowEDd 75 F-jl,., £+
= [F-1l,.., F+
case \ ) Fal: F' = F-I, £, f+
i.e. AF= 0,11

Cast 2) fro- Fi=4
(+&. FzO—’f/-’ O FoRrREIDDEN

JALLOWED m¢" = Mg +m; 2 Amp =0t



> 0N OVE ALLowkD FIVAL STATE

E.G- fo. @~ TRFNS’(’CHJ/\)) MF/:M[-H
CONSIDER  F=i—= 7= TrausiTioN
SUPPGSE  INITIAL STATE (g ID‘vIF:l,MfQ
THEN FIvAL STATE g ll}=lf’=2,M[<ﬂ>

4
Pz -2 -\ o ) A2 /‘4{?
ot
fF=1 —
I o 7 M

/

STIMULATED EMissioN M 7T v we
AP
— 7

NEW PHOTON IS IDENTICAL
ATOM  LoSES  AVGULAR MoMENTUM j
AND ENERGY tHw
= GoES BACK To ORIGIWAL GRoUND STATE
50 Two-LRVEL = Two ~STATE SYSTEMm
[)= [ Fm
ll)i(f’M/Q
AF=0,%) (Mo Fz0-[’:0)
AMp = 0, £0  DEPENDING ON POLARIZATION



SPONTANEOUS EMISSIoN
o CAN DECAY To ANY LEUEL
BREAKS THE A-LLUEL MODEL

-~ -1 1 2
c G- F’=a =2 Mg

2cONLY oNE ALLIWED TRANSYTION
“CYCLING TRANS(TION

L-STATE MoneL  ALSO Good WHEN SPonT DECAY NEGLL gise
= SHORT TIMEs <= Uy
(€  MicRowAVE TRANSITION W THIv GAMD STATE
Jaxw®—= 0 As 4o
— NEGLigielE ExciTED STATE PRob.
6. LARGE DETONWG



INTERACTVON W ExTERNVAL FIELDS
HAMiLTomay  of  Atom w FREL Seack: Y,
WITH APPLIED  AELDS, HAMLTOMAN 1S

hw = H, + R

———

S PERTORGATIEN

ELECTAIC DiPoLE  (NTERACTION
for ATom IN EM FIELD, FIRST-ORDER Arrox. is

H'(x) = '7;( JE(t)

WHERE 1 = DiPoLE OPERATOZ . For N ELECTRoNS:

N
d=t (-ev) - ASSuMwe NUcLEus AT 7= O

=

MAGNETIC DIPOLE \NTERACT|oN
> INTERACTION w/ MAGNETIC FELD R

H'te) = —/TZ‘ E(-t)
(UHECE R = MAGNETIC DiPOLE  0PERATOR
_ B — —d —4
- "/_;T( ?LL+9SS +ﬂrz>

’«7‘/%(?«%2@



PHY HHE SPRWG LOLO
| ECTuRE 9

/(72026

o TWo-LEVEL AToM
o FIAST-0RDER. T(ME-DEPENDLNT SoLJTIoN

Two-LEVEL  ATom

2

fw,
{

STATES 1> 4 (2D
ENERGIES 1D = E, 1D
H12)= E,12D
DEFfNE:  w, zE [} L Wa= E./H
W, = Wa-W, -RESovANCE [Re@.

W AVE FUNCTION ¢ W’> = C, 5"“‘* [1)-(— C, ej{“’lt[l>
Ci» Cy CONST
SATISHES TO.SE- it 20%) = 4, 1¥)
% 9&“‘[’) = {h (q (—iw,) WD) G_[-—{%)ejfwzb/2>>
= fwe eI+ f, Cp € [2)

= H, ¥



EXTERMAL FIBEL)

Hw= H,+ H i)

FLECTRic DIiPoLE [NTERACTION

L/ = .52

(WHERE Eflt) = E(Fm,t)

VAUD (WHEN ki << |
(5 (@) <1

Q——/\,\J
~ 10”1 For VISIBLE LIEHT

LEX PECTATION ~ALUE of W/ 1s 2£40:
Cap 1) = = <A - L) = O
I |

2EL0  BY SYMMETIRY

Sane for 12D,

2w f22=10



TIME EyoluTioN
iR YY) = HWw [PS (TDSE)

LET |Y(&) = Qtt) ot 1}+Cztt)e‘“/ztll>

1
THE Borwe Pagr

CHAUGES DUE To H/

PLU¢ INTo T.0.S.E.
LHS = ({;2 W’) - [{[(C[ twc) d: l)
(¢, ~w,g)e hwy t :OJ

( ‘(;\C, 4-"‘%»/6 e Wit

t(iho b Q) gt
RUS = (Hta )It) = [, 1) + W[w)
2 QST D + G b D)
L oC ety + et H1L)

MULTILY g¢ 1] o ’
ik et = C, et (Wﬁ)i—@é'%i 1//,//2)

4 C, = St a2 e,
St el ¢,
L\REWISE  mucteey &Y <[

y

ik (= et [ M) ) C,



GHT
EARLY PoLARIZED L1
LWM’ = E % cos(wt) .,
i; AN Eocfmg’ coslwt)) 2D
o H/M:D i <i;<1x{dxla> c63(wi)

Ly 0

t coS(wt)
C

R AR FRE&UEJ/YE <”Jx|2>
SL = T YL,

| ";Q)a‘t; CZ
b () wt) ¢
’ (:, = Cos( ° Cl
2 = * cozlwt) e
L CZ. -



F1RST-ORDER SOLOTION

+ CONSIpER. Ciloy =1, Glo) =0
— SUDDEN TuM-ON  of FlELd
' TR SHORT TWMES | ek FIELD, o/ LARGE DETUNWG
—> SMALL EACitATIoN PROBABILTY [ey*
APPROXIMATE: Cl(t)%{/‘ G220
]
LC, m ¥ Ga's[wf)e,i%'t 9/

-~ % .
<~ (L wwt —'MHZ it
= (@ ¢
X lwtw)t {Lwo—w)’c)
—\ ¢ + ¢
——J W_J
J \
! CounTER-ReTatvG  CO-RITATING TEZM
TERMIA
INTE GRATE: 0

t. ~
C,(t) = / C, dt + G (o)

o

t f /
H ; A iw,~w)t
_ 'é—ﬂxf (€(w+w}t+£ w )(H/
o

_ ¥ [ e:(unw,)f_[ ) e'l(u)d—'u))t—l J
o . .
twtw,) (w -w)

[ BWa | ProgLem 4 USES Twis )
+ EQUIVALENT To | oRENTZ OSCILLATOR wi = QO

NEAR-RESONANCE  ApPrRo .
|(u-UU°[ <L OJO

=) Co-ROTATING TERA DOMIVATES



“RoTATING WAVE APPROXAMAT\ON
NEGLECT COUNTER~ROTATWGE TERM

Clt) X -_{2;_? e”w"“})t_l
>

(w-w)
A; wW—=wh
EXCITATION PRoB. .\, l'l

/Cz_(t)/?’ ~ { % \7,[ 2 2“[

-iMtlz €
[

—

A

=3l

2

—

= (2

Sin*(£t)
VALID wHEN (C, (<<

forR  GUWEN t

MAAN  Po(NTS -
R G R T el

D ALLOWED TRANSITIoNS HAVE <i[dx2) #0
ENCoDES SELECTION RULES

1) [C2l® LARGEST NEAR RESONANCE



DIPOLLE MOMENT .
/L’V> _ C(éwj't(lv L CZ é\\l}zt/2>

{dyd® <Yldsly) = (g* e™t<i] CZ"e,[wzt<2\§
dx (C e,“”'fm‘f C;_e‘wlt/2>)

= Crea UG D + ce

= 2 Re [CI“CLQ(WJO/JJ@ }

—— ENN of LECTURE —



PoLARIZABILITY SKIP

COMSIDER  ADWABATIC RAMP of fipp |, [J2(<< A
(To REACH STEADY STATE wio bAnPLYG)

Ew = {e”\?o’k coslwt) , t<O
Eox Costwi), t20°

E
ﬂzﬂﬂ‘ljgaggﬁ > SLow RAME : 7 << )

INITUAL cono. Cil-29)= 1, C(-00)= O
RoTATwe WAVE  AppRoOX (}Al<< wo) foR SimPuiTy
FoR £>0 :

C, ) ~ _L_Qx[f (em ((w,,~w)-&/) W/
. o'ter(wo-w}ﬁJ/ :’




PLU G N For. 444 Sf

> = 2 fe [c,*cze‘“""tc b /@j \ |
A Y

2A €

(ST - L, <2l )
= R Lo daludd g1 G 412)]

= ‘-T Re{ [<ildx1a) BMB //
- f [<1[dy D] coslwt)| = o £ coslwt)

Pocarizagivity (o)

ol (A) =~ — '(‘[Axlﬂ>51

I1ctlactar)
1A
LORENTZ OSC|LLATOR (ﬂsO)-‘
ol (b)) x -e? ( MEAA«RES@NAA/(,E)
P — —
20MW, A APPRG% .

OSCILLATOR  STRENGTYH
o< (n) < *_ﬁ,___i l

—

ZMWO A
ot o QIR —

LMW, +




£ = f";“"’ [(r[ol l>) < |

“STRONE TRANSITIONS + 4, ~ 1




SKiP:
CIRCULARLY PoLARIZED
" _ R&EE z uut] ) %;::/’71&4»{9\

_ &, KaL (%ftg)((‘/o‘Surt—%S\'Awt)}
dz. —

= "%_ (’;(c/ostwh) +9 S{nlwt))

H/:-é‘ﬁ = J,J% (;\(wlwi){-gsinlwt))
- J‘i_z (Q/X Cos(wi) +J S{nlwf))

= J%‘-[Jx l( wl‘b \u{') +A'ﬂ -1 mt _]w{:)}
= | et damily) 8t (drtdy)
= Eef gty gty

C{- = ﬁ(dxﬂiéy)
d-(— = :'{_l_;.(dx‘l'{iy)




PUY 446  SPRWG 2020
LECTURE | O

2/14/2020
- RLIZ
* RAB\ OSCILLATION
LAST TIME® 2.LTVEL ATom

2 —— Ey=thw,
‘Rh‘*’o wozwz-wl
| = €= o,

APPLIED Fielp - Etey= E,% coslut)
IVH) = G &t [D + ¢ reé ™t (2)

RARI fREQ : ()= —<,/Jx12>

T DiPol s OPERATOR.
SCHRODINGER EQN:

{.c = coslwt) € Cy
(o = _FCoslwt) gt C,

LAST T(mE: SolNED APPROYIMATELY
foR  Low EXCITATION ProsAsitiTy Cx | | G2 0O

el S5 F s (4)

= WoRKS fsR [ ARGE DETUNWG (81> 1J2 |
o IsT-O0/ER IN TIME DEf. PERT THERRY



AR 0SCILLATION ~ DIRECT SoluTion
Now: SolvE  To Licuer DROHER
APPLY ROTATWG  WAUE  APPROXIMATION

. o - —l‘wot
P C = %[e'% e “t)g Co

~ JU [ lw-wt —iwew)
= 7 (6 f oWt ) o

———/
MEGLECT (oSau_A-rés Too ﬁi:r)

~ .
~S
2

T RoTATWTG WAVE APPROX .

L i (w-wo it JU (§t
e G, = =z¢e

WHERE 6= Ww-w,
SimiLaR Fok Cp ¢

'&l; _% ‘gtcz
i Cp = %‘é‘g{ Cy
COMBINE!
Eo = -1 (L5 ¢ 0 )™
- —
(C,
= -16Cy - (% ZCz




SOLVE LW LAR ODL:-

Cov 186+ [ Zc =0

SoLuTion: ¢, ~ et A= UVKNowN

N e idh e (27 =0

N = T £{-6% g4 lanl®
l' -
o , W:@/&
— -i§ t toz/JS "4-[(;_/7' = -‘% t [
INVTIAL CcoNDITiON C, (0) =0

Colt) = g 3 A oin twi/a)

&




FIND A BY NoRMALIZIVG :
! (7
et = [‘J’,‘uz/ﬂ[z[g g:’mz("%)+h/zm7@/]

[=lal™lc,|® = {MT( 14 ,S;M) s (55 + g,;a/}i”z’fﬂzf@d

_ 2 —w:’ B z_ [se1®
A" e = A=

[T A=-i*w

PUT 1t ALL TOGETHUER
SoLuTioY  (FoR ¢ua=0 g =)

Clt)= Lt [-as sin( ).« wm[“’%)]

l
W
' 0 X -5t R

G (2) =~ g Sin( 4

WEr S

EXAMPLE « LET §20 N Real

APPLY LigHT PuLSt foR TME T, wHERE L T=T
+ CALLED 4 7" T PyLSE"

ey 11>, Avd [wT) |

C(v=cos( nT/2) = cos(w/2) = O

C2(T)=-{ Sin(@T/2) = ~(Sin(w(2) = ~ L

Y1) = Catmr £ [2) =m




RAB\ 0SCILLAT ON
EXCQITATION  PROBABILITY (JSCILLATES

16 (10| = ol 3\"“1( Flarsgr ﬁ\

Ja+ 8"
1
b(/\/\ > 4
b MAYX of gt g bl

[t §*

OV Resopanck (=0)

I le)]* = Stn?( Fl2(4)

Py

'\

J MAY\ lcz,]L 1S 1

“RABL 0SCLLATION
OBSERVABLE WHEN 220 (NEGCLIGIBLE DAMPING)
— (-¢. MICROWAVE TRANSITIONS £
MNARROW OPTICAL TRANSITIONS
» BUILDWG BLOCK of ATOMIC (LOCKS
4 QUANTUM  ComPUTERS

e DIFFERENT RO OSciyATioN OF DiPoLE MOMENT



PRY 440  SPARWG 020
LECTURE ]

L/ 24/3020
BLOCH VECTOR
PAECESs 100
Two-LEVEL ATgm <> SPivs Iv B FIELD

L

)1y, 12) (12 14

TodAY * STUDY SPnE To GET (NTLTioN

WARmM Ue
SPIN My WD = aAD + G\

SPIN VECTOR

—

S = g‘;&i -j¢=(ﬁ‘¥/6§a‘)

/ )

FIND £5,),<6,2, L8> IV Team of ¢, ¢,
PAULL MAT RICES
(75
0x =\l o) = [H] « | 1D<|
o -
- <z 0)° é[u}m—MXn-}
t o
- (o —\) = [ = (D



(5> = (Cx“,%*?(O 1>(cl >=(q*,c;‘)(q>
L0 c, G

= QYT e = 2R (6%

(o2 = (6% &) (o _L)K Lj qxcx)(zz)

= ilg¥y - ¢VG) = 2Tm(c*e)
L0 = (g7 CL"7<) 0 \[a) = (4.5 4
: / 6~1)(0L) ’ <’%)
= lq[zf(cz{t
Nore 60" <opd*eded” =0 (2)
sPROVE Foe HW
(R"*(C‘x%f v In(@e) = [¢al" - IQ/LIGLIL}

L = digre[* *(lel*-lgr) ©
SN AL PR LT AR L B YL T

S V- R Y N B Vel L K
(Iql™ v 1e1?)? = 4



BLocH SeuirE

DEF:  w= <oed = 2R (GP)
VE L)t 2 LulG*e)
W= Cga) = lal®-lar*

BLOCH VeCtpoe + A [1nV,w)
- CLASSUCAL  VECTOR (MoT (PERATOR )

-

Nogm: ReR = o+t =]
(= Lo )2regr"vlegd” )

BLocH SPUERE (UA/lT SPHERE )

EX. [ OCATE onv BLOCU SPHegE
(=117 ¢ =1 6=0

=0 v, W = | WUA‘TH PoLR
) [W =) < ¢,20, =]

Uw=0=V ; W=-| @OUT@

D= H(H41D) " = G2 &

EVERY [U) for SPivt MAPS To A PollT
on  BLOCH  SPUERL

VoT  FoLty UNIQUL < 18 Awp ¢ [¥
MAP To SAME PonT
(o >'= U o W) = vl ) = <&)

ET¢



THAT'S (¥Y— R . vex7: B~ ¥D

(LYW ) = SPUBLICAL CoolDIAATES
L= c(ne Cosy
N < SIn @ siad

W= (SO

CAN cHich: [P) = é"‘[cw(f) > +6% 512)] JJ}
L/.186, FHASE
( kW) '

A | o

(= ZM(Q’CL): 3o Cos ¢

V= XIm(q?@)= Sino Sird

W= 1GQ15-lal* = co:s"(o/L)—Si’f’(%)
T Cx($-(2)) = coso



TWE £V0LUTLON
SPW ¥ N B R

h= -p € = %ﬁig.

[oa))
§
s
(!
W

ToSE: 14 2 (P = HIY)D

> ik g (2)= /Le<Be waz@})(z)

Bx“"@j B,

— SUHow USING 5,

Fun £R , ose 46 - <X 2
[$05,0° ik % [0 %51 =ik £6,
2 [ ox0,) = Jibe
x
Y—H,Ex} - /"rsiyéxorlggw 63 62, b}} 5ﬁ©3
SUNEETINEY A AR I
W) = i M (6xE),
IR TS T

= LB

Simitar  Fop G,, G

-~

B ~ gRTHOGNAL To R
A%’ R =% BxK |« a B
- ‘ Evft 1S CONSTANT




®Lo
CW JECTo&k PRECESSES RBout ¢

o)
. J
3 It

A

:‘_—%/A”—BOK E

L4

(AR QSCILLNTION
Suepost @ = (8,,0,0)
AND H["’) = |4
2  R(o) =(0,0 1)

\r)




Two-LEVEL ATom

S CHRODINGER EQN:

{ré, = O coslutre™ €y
(2 =t Cosluty gt C,

ROTATI\N G WAE  APPREY. (RWA
¢, & S 8t Cz

NEXKT: SimrulY uS\We  CHANGE oF VARIABLE S
MAP onvTo  BlLocH SPHERE MoDEL



Puy kue SPAWG 00
LectuRrRe [

2/ % 6/3.0)0

» ROTATING  FRAME TransSFoRMATION
" BLOCH VEector PrRECESSION
Vwo-LEVEL [roN

A -{w —tw
Lw« b ¥ = g™ g e

|

(g = Wz =Wy

— NEGLECT\W( SPONT. EMiss.

ROTAT\N G WAE  APEREX. (RWA)
l»(-‘q 2~ % 6[5‘& Cr

(e X _18
1G5 <X ‘—%e JCC_L
62 w’wa

ELVWNATE  TIME-DEPENDENCE UsiNG

“ROTATING  FRAME  TRAMS FoRmATION”
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